Ionizing radiation affects epidermal growth factor receptor signalling and metalloproteinase secretion in glioma cells
- PMID: 21289335
Ionizing radiation affects epidermal growth factor receptor signalling and metalloproteinase secretion in glioma cells
Abstract
Background: The effect of different doses of X(-)rays on apoptosis, proliferation, epidermal growth factor receptor (EGFR) and matrix metalloproteinase (MMP-2) expression was investigated in a human glioblastoma cell line.
Materials and methods: The cell line LN18 was irradiated at room temperature with doses ranging from 0.5 to 15 Gy using 6 MV X(-)rays. Apoptosis was assessed using the annexin V binding assay, proliferation by the methyl tetrazolium (MTT) assay and MMP-2 secretion with zymography. The levels of phosphorylated (pEGFR) were estimated using a commercially available ELISA kit.
Results: Cell proliferation decreased in a dose-dependent manner, while apoptosis was increased after radiation. Doses below 2 Gy did not affect proliferation or apoptosis. MMP-2 levels were increased 48 h after radiation in a dose-dependent manner. In contrast, EGFR signaling was significantly activated 15 min after radiation in a dose-dependent manner.
Conclusion: Ionizing radiation activates EGFR signalling and enhances MMP-2 secretion, suggesting that the molecular pathways involved may contribute to the invasiveness and malignant behaviour of glioma cells and help to explain the response of gliomas to ionizing radiation.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous