Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Apr 12:1384:69-79.
doi: 10.1016/j.brainres.2011.01.086. Epub 2011 Feb 1.

The pyramidal neurons in the medial prefrontal cortex show decreased response to 5-hydroxytryptamine-3 receptor stimulation in a rodent model of Parkinson's disease

Affiliations

The pyramidal neurons in the medial prefrontal cortex show decreased response to 5-hydroxytryptamine-3 receptor stimulation in a rodent model of Parkinson's disease

Qiao Jun Zhang et al. Brain Res. .

Abstract

In the present study, effect of SR 57227A, a selective 5-hydroxytryptamine-3 (5-HT(3)) receptor agonist, on the firing activity of pyramidal neurons in the medial prefrontal cortex (mPFC) was studied in normal rats and rats with 6-hydroxydopamine lesions of the substantia nigra pars compacta by using extracellular recording. Systemic administration of SR 57227A (40-640 μg/kg, i.v.) decreased the mean firing rate of pyramidal neurons in normal and the lesioned rats. This inhibition was significant only at doses higher than 320 μg/kg and 640 μg/kg in normal and the lesioned rats, respectively, and was reversed by i.v. administration of 5-HT(3) receptor antagonist tropisetron or GABA(A) receptor antagonist bicuculline. Furthermore, local application of SR 57227A (0.01 μg) in the mPFC inhibited the firing rate of pyramidal neurons in normal rats while having no effect on firing rate in the lesioned rats. The i.v. administration of bicuculline excited the pyramidal neurons in normal rats, and then local application of SR 57227A did not alter the mean firing rate of these neurons. However, these two drugs did not affect the activity of the pyramidal neurons in the lesioned rats. We conclude that activation of 5-HT(3) receptors inhibited pyramidal neurons in the mPFC of normal rats via GABAergic interneurons, and degeneration of the nigrostriatal pathway decreased response of the pyramidal neurons to SR 57227A, suggesting the dysfunction of 5-HT(3) receptors and/or down-regulation of the expression on GABAergic interneurons in the lesioned rats.

PubMed Disclaimer

Publication types

MeSH terms