Identification of essential lysines involved in substrate binding of vacuolar H+-pyrophosphatase
- PMID: 21292767
- PMCID: PMC3069399
- DOI: 10.1074/jbc.M110.190215
Identification of essential lysines involved in substrate binding of vacuolar H+-pyrophosphatase
Abstract
H+-translocating pyrophosphatase (H+-PPase; EC 3.6.1.1) drives proton transport against an electrochemical potential gradient by hydrolyzing pyrophosphate (PPi) and is found in various endomembranes of higher plants, bacteria, and some protists. H+-PPase contains seven highly conserved lysines. We examined the functional roles of these lysines, which are, for the most part, found in the cytosolic regions of mung bean H+-PPase by site-directed mutagenesis. Construction of mutants that each had a cytosolic and highly conserved lysine substituted with an alanine resulted in dramatic drops in the PPi hydrolytic activity. The effects caused by ions on the activities of WT and mutant H+-PPases suggest that Lys-730 may be in close proximity to the Mg2+-binding site, and the great resistance of the K694A and K695A mutants to fluoride inhibition suggests that these lysines are present in the active site. The modifier fluorescein 5'-isothiocyanate (FITC) labeled a lysine at the H+-PPase active site but did not inhibit the hydrolytic activities of K250A, K250N, K250T, and K250S, which suggested that Lys-250 is essential for substrate binding and may be involved in proton translocation. Analysis of tryptic digests indicated that Lys-711 and Lys-717 help maintain the conformation of the active site. Proteolytic evidence also demonstrated that Lys-250 is the primary target of trypsin and confirmed its crucial role in H+-PPase hydrolysis.
Figures








Similar articles
-
Roles of histidine residues in plant vacuolar H(+)-pyrophosphatase.Biochim Biophys Acta. 2004 Feb 15;1608(2-3):190-9. doi: 10.1016/j.bbabio.2004.01.001. Biochim Biophys Acta. 2004. PMID: 14871497
-
Functional roles of arginine residues in mung bean vacuolar H+-pyrophosphatase.Biochim Biophys Acta. 2007 Jul;1767(7):965-73. doi: 10.1016/j.bbabio.2007.04.007. Epub 2007 May 3. Biochim Biophys Acta. 2007. PMID: 17543272
-
Identification of the critical residues for the function of vacuolar H⁺-pyrophosphatase by mutational analysis based on the 3D structure.J Biochem. 2014 Dec;156(6):333-44. doi: 10.1093/jb/mvu046. Epub 2014 Jul 28. J Biochem. 2014. PMID: 25070903
-
Biochemical, Structural and Physiological Characteristics of Vacuolar H+-Pyrophosphatase.Plant Cell Physiol. 2018 Jul 1;59(7):1300-1308. doi: 10.1093/pcp/pcy054. Plant Cell Physiol. 2018. PMID: 29534212 Review.
-
Vacuolar H(+)-pyrophosphatase.Biochim Biophys Acta. 2000 May 1;1465(1-2):37-51. doi: 10.1016/s0005-2736(00)00130-9. Biochim Biophys Acta. 2000. PMID: 10748246 Review.
Cited by
-
Squeezing at entrance of proton transport pathway in proton-translocating pyrophosphatase upon substrate binding.J Biol Chem. 2013 Jul 5;288(27):19312-20. doi: 10.1074/jbc.M113.469353. Epub 2013 May 29. J Biol Chem. 2013. PMID: 23720778 Free PMC article.
-
Substrate-induced changes in domain interaction of vacuolar H⁺-pyrophosphatase.J Biol Chem. 2015 Jan 9;290(2):1197-209. doi: 10.1074/jbc.M114.568139. Epub 2014 Dec 1. J Biol Chem. 2015. PMID: 25451931 Free PMC article.
-
Functional and fluorescence analyses of tryptophan residues in H+-pyrophosphatase of Clostridium tetani.J Bioenerg Biomembr. 2014 Apr;46(2):127-34. doi: 10.1007/s10863-013-9532-x. J Bioenerg Biomembr. 2014. PMID: 24121937
-
Isolation and characterization of a conserved domain in the eremophyte H+-PPase family.PLoS One. 2013 Jul 29;8(7):e70099. doi: 10.1371/journal.pone.0070099. Print 2013. PLoS One. 2013. PMID: 23922918 Free PMC article.
-
Functional investigation of transmembrane helix 3 in H⁺-translocating pyrophosphatase.J Membr Biol. 2013 Dec;246(12):959-66. doi: 10.1007/s00232-013-9599-7. J Membr Biol. 2013. PMID: 24121627
References
-
- Maeshima M. (2000) Biochim. Biophys. Acta 1465, 37–51 - PubMed
-
- Rea P. A., Poole R. J. (1993) Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 157–180
-
- Li J., Yang H., Peer W. A., Richter G., Blakeslee J., Bandyopadhyay A., Titapiwantakun B., Undurraga S., Khodakovskaya M., Richards E. L., Krizek B., Murphy A. S., Gilroy S., Gaxiola R. A. (2005) Science 310, 121–125 - PubMed
-
- Guo S., Yin H., Zhang X., Zhao F., Li P., Chen S., Zhao Y., Zhang H. (2006) Plant Mol. Biol. 60, 41–50 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials