Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Feb;54(2):154-68.
doi: 10.1080/00140139.2010.538723.

The effect of work pace on workload, motor variability and fatigue during simulated light assembly work

Affiliations
Free article

The effect of work pace on workload, motor variability and fatigue during simulated light assembly work

T Bosch et al. Ergonomics. 2011 Feb.
Free article

Abstract

This study investigated the effect of work pace on workload, motor variability and fatigue during light assembly work. Upper extremity kinematics and electromyography (EMG) were obtained on a cycle-to-cycle basis for eight participants during two conditions, corresponding to "normal" and "high" work pace according to a predetermined time system for engineering. Indicators of fatigue, pain sensitivity and performance were recorded before, during and after the task. The level and variability of muscle activity did not differ according to work pace, and manifestations of muscle fatigue or changed pain sensitivity were not observed. In the high work pace, however, participants moved more efficiently, they showed more variability in wrist speed and acceleration, but they also made more errors. These results suggest that an increased work pace, within the range addressed here, will not have any substantial adverse effects on acute motor performance and fatigue in light, cyclic assembly work. STATEMENT OF RELEVANCE: In the manufacturing industry, work pace is a key issue in production system design and hence of interest to ergonomists as well as engineers. In this laboratory study, increasing the work pace did not show adverse effects in terms of biomechanical exposures and muscle fatigue, but it did lead to more errors. For the industrial engineer, this observation suggests that an increase in work pace might diminish production quality, even without any noticeable fatigue being experienced by the operators.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources