Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 May;1813(5):922-34.
doi: 10.1016/j.bbamcr.2011.01.030. Epub 2011 Feb 3.

Atrial cardiomyocyte calcium signalling

Affiliations
Free article
Review

Atrial cardiomyocyte calcium signalling

Martin D Bootman et al. Biochim Biophys Acta. 2011 May.
Free article

Abstract

Whereas Ca(2+) signalling in ventricular cardiomyocytes is well described, much less is known regarding the Ca(2+) signals within atrial cells. This is surprising given that atrial cardiomyocytes make an important contribution to the refilling of ventricles with blood, which enhances the subsequent ejection of blood from the heart. The dependence of cardiac function on the contribution of atria becomes increasingly important with age and exercise. Disruption of the rhythmic beating of atrial cardiomyocytes can lead to life-threatening conditions such as atrial fibrillation. Atrial and ventricular myocytes have many structural and functional similarities. However, one key structural difference, the lack of transverse tubules ("T-tubules") in atrial myocytes, make these two cell types display vastly different calcium patterns in response to electrical excitation. The lack of T-tubules in atrial myocytes means that depolarisation provokes calcium signals that originate around the periphery of the cells. Under resting conditions, such Ca(2+) signals do not propagate towards the centre of the atrial cells and so do not fully engage the contractile machinery. Consequently, contraction of atrial myocytes under resting conditions is modest. However, when atrial myocytes are stimulated with a positive inotropic agonist, such as isoproterenol, the peripheral Ca(2+) signals trigger a global wave of Ca(2+) that propagates in a centripetal manner into the cells. Enhanced centripetal movement of Ca(2+) in atrial myocytes leads to increased contraction and a more substantial contribution to blood pumping. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.

PubMed Disclaimer

Publication types

LinkOut - more resources