Association of the disordered C-terminus of CDC34 with a catalytically bound ubiquitin
- PMID: 21296085
- DOI: 10.1016/j.jmb.2011.01.047
Association of the disordered C-terminus of CDC34 with a catalytically bound ubiquitin
Abstract
Cell division cycle protein 34 (CDC34) is a key E2 ubiquitin (Ub)-conjugating enzyme responsible for the polyubiquitination of proteins controlling the G1/S stages of cell division. The acidic C-terminus of the enzyme is required for this function, although there is little structural information providing details for a mechanism. One logical time point involving the C-terminus is the CDC34-Ub thiolester complex that precedes Ub transfer to a substrate. To examine this, we used a CDC34-Ub disulfide complex that structurally mimics the thiolester intermediate. NMR spectroscopy was used to show that the CDC34 C-terminus is disordered but can intramolecularly interact with the catalytically bound Ub. Using chemical shift perturbation analysis, we mapped two interacting regions on the surface of Ub in the CDC34-Ub complex. The first site comprises a hydrophobic patch (typical of other Ub complexes) that associates with the CDC34 catalytic domain. A novel second site, dependent on the C-terminus of CDC34, comprises a lysine-rich surface (K6, K11, K29, and K33) on the opposite face of Ub. Further, NMR experiments show that this interaction is described by two slowly exchanging states-a compact conformation where the C-terminus of CDC34 interacts with bound Ub and an extended structure where the C-terminus is released. This work provides the first structural details that show how the C-terminus of CDC34 might direct a thiolester-bound Ub to control polyubiquitin chain formation.
Copyright © 2011 Elsevier Ltd. All rights reserved.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
