Disturbed choline plasmalogen and phospholipid fatty acid concentrations in Alzheimer's disease prefrontal cortex
- PMID: 21297269
- PMCID: PMC3175096
- DOI: 10.3233/JAD-2011-101608
Disturbed choline plasmalogen and phospholipid fatty acid concentrations in Alzheimer's disease prefrontal cortex
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by brain deposition of senile (neuritic) plaques containing amyloid-β, neurofibrillary tangles, synaptic loss, neuroinflammation, and overexpression of arachidonic acid (AA, 20:4n-6) metabolizing enzymes. Lipid concentration changes have been reported in different brain regions, but often partially or as a percent of the total concentration. In this study, we measured absolute concentrations (per gram wet weight) of a wide range of lipids in postmortem prefrontal cortex (Brodmann area 9) from 10 AD patients and 9 non-AD controls. Mean total brain lipid, phospholipid, cholesterol, and triglyceride concentrations did not differ significantly between AD and controls. There was a significant 73% decrease in plasmalogen choline, but no difference in other measured phospholipids. Fatty acid concentrations in total phospholipid did not differ from control. However, docosahexaenoic acid (DHA, 22:6n-3) was reduced in ethanolamine glycerophospholipid and choline glycerophospholipid, but increased in phosphatidylinositol. AA was reduced in choline glycerophospholipid, but increased in phosphatidylinositol, while docosatetraenoic acid (22:4n-6), an AA elongation product, was reduced in total brain lipid, cholesteryl ester and triglyceride. These lipid changes, which suggest extensive membrane remodeling, may contribute to membrane instability and synaptic loss in AD and reflect neuroinflammation.
Conflict of interest statement
References
-
- Arendt T. Synaptic degeneration in Alzheimer's disease. Acta Neuropathol. 2009;118:167–179. - PubMed
-
- Stephenson D, Rash K, Smalstig B, Roberts E, Johnstone E, Sharp J, Panetta J, Little S, Kramer R, Clemens J. Cytosolic phospholipase A2 is induced in reactive glia following different forms of neurodegeneration. Glia. 1999;27:110–128. - PubMed
-
- Sun GY, Xu J, Jensen MD, Simonyi A. Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J Lipid Res. 2004;45:205–213. - PubMed
-
- Lukiw WJ. Gene expression profiling in fetal, aged, and Alzheimer hippocampus: a continuum of stress-related signaling. Neurochem Res. 2004;29:1287–1297. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
