Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 May;27(3):276-84.
doi: 10.1097/MOG.0b013e32834405c3.

Cancer-associated fibroblasts in intrahepatic cholangiocarcinoma

Affiliations
Review

Cancer-associated fibroblasts in intrahepatic cholangiocarcinoma

Alphonse E Sirica et al. Curr Opin Gastroenterol. 2011 May.

Abstract

Purpose of review: The aim of this brief review is to provide an up-to-date view of the role played by α-smooth muscle actin-positive cancer-associated fibroblastic cells in promoting intrahepatic cholangiocarcinoma progression.

Recent findings: An increase in α-smooth muscle actin-positive cancer-associated fibroblastic cells in the stroma of intrahepatic cholangiocarcinoma has recently been demonstrated to accelerate cholangiocarcinoma progression. However, our understanding of the evolving cellular and molecular interactions between these stromal cells and cholangiocarcinoma cells in relation to promoting intrahepatic cholangiocarcinoma progression is only just beginning to be elucidated. Imbalances in multifactorial growth factor/cytokine signaling, activation of Hedgehog-GLI signaling and of proteases involved in extracellular matrix remodeling, and matricellular protein-protein and protein-cholangiocarcinoma cell interactions, as well as hypoxia, all appear to factor into the complex and dynamic interactive mechanisms through which cancer-associated fibroblastic cells crosstalk with cholangiocarcinoma cells to promote intrahepatic cholangiocarcinoma progression. Novel three-dimensional organotypic co-culture models are being developed to facilitate relevant studies of cancer-associated fibroblastic cell/cholangiocarcinoma cell interactions that may more accurately mimic physiologically pertinent features of the tumor.

Summary: Increasing our understanding of critical interactive pathways by which cancer-associated fibroblastic cells crosstalk with cholangiocarcinoma cells to promote tumor progression can lead to the development of novel multitargeting strategies for intrahepatic cholangiocarcinoma therapy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms