Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jan 26;6(1):e15977.
doi: 10.1371/journal.pone.0015977.

Low dose organochlorine pesticides and polychlorinated biphenyls predict obesity, dyslipidemia, and insulin resistance among people free of diabetes

Affiliations

Low dose organochlorine pesticides and polychlorinated biphenyls predict obesity, dyslipidemia, and insulin resistance among people free of diabetes

Duk-Hee Lee et al. PLoS One. .

Abstract

Background: There is emerging evidence that background exposure to persistent organic pollutants (POPs) are important in the development of conditions predisposing to diabetes as well as of type 2 diabetes itself. We recently reported that low dose POPs predicted incident type 2 diabetes in a nested case-control study. The current study examined if low dose POPs predicted future adiposity, dyslipidemia, and insulin resistance among controls without diabetes in that study.

Methodology/principal findings: The 90 controls were diabetes-free during 20 years follow-up. They were a stratified random sample, enriched with overweight and obese persons. POPs measured in 1987-88 (year 2) sera included 8 organochlorine (OC) pesticides, 22 polychlorinated biphenyls (PCBs), and 1 polybrominated biphenyl (PBB). Body mass index (BMI), triglycerides, HDL-cholesterol, LDL-cholesterol, and homeostasis model assessment value for insulin resistance (HOMA-IR) were study outcomes at 2005-06 (year 20). The evolution of study outcomes during 18 years by categories of serum concentrations of POPs at year 2 was evaluated by adjusting for the baseline values of outcomes plus potential confounders. Parallel to prediction of type 2 diabetes, many statistically significant associations of POPs with dysmetabolic conditions appeared at low dose, forming inverted U-shaped dose-response relations. Among OC pesticides, p,p'-DDE most consistently predicted higher BMI, triglycerides, and HOMA-IR and lower HDL-cholesterol at year 20 after adjusting for baseline values. Oxychlordane, trans-nonachlor, and hexachlorobenzene also significantly predicted higher triglycerides. Persistent PCBs with ≥7 chlorides predicted higher BMI, triglycerides, and HOMA-IR and lower HDL-cholesterol at year 20 with similar dose-response curves.

Conclusions/significance: Simultaneous exposure to various POPs in the general population may contribute to development of obesity, dyslipidemia, and insulin resistance, common precursors of type 2 diabetes and cardiovascular diseases. Although obesity is a primary cause of these metabolic abnormalities, POPs exposure may contribute to excess adiposity and other features of dysmetabolism.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Effects of p,p'-DDE on BMI, dyslipidemia, and insulin resistance.
Adjusted means of year 20 BMI, triglycerides, HDL-cholesterol, and HOMA-IR according to serum concentrations of p,p'-DDE at year 2. Adjusting variables were age, sex, race, BMI, triglycerides, and total cholesterol at year 2. Year 20 HDL-cholesterol and HOMA-IR were additionally adjusted for their baseline values at year 2 and year 7, respectively.
Figure 2
Figure 2. Effects of PCB178 on BMI, dyslipidemia, and insulin resistance.
Adjusted means of year 20 BMI, triglycerides, HDL-cholesterol, and HOMA-IR according to serum concentrations of PCB178 at year 2. Adjusting variables were age, sex, race, BMI, triglycerides, and total cholesterol at year 2. Year 20 HDL-cholesterol and HOMA-IR were additionally adjusted for their baseline values at year 2 and year 7, respectively.

Similar articles

Cited by

References

    1. Lee DH, Steffes MW, Sjödin A, Jones RS, Needham LL, et al. Low dose persistent organic pollutants predict type 2 diabetes: A nested case-control study. Environ Health Perspect 2010 - PMC - PubMed
    1. Lee DH, Lee IK, Steffes M, Jacobs DR., Jr Extended analyses of the association between serum concentrations of persistent organic pollutants and diabetes. Diabetes Care. 2007;30:1596–1598. - PubMed
    1. Lee DH, Lee IK, Song K, Steffes M, Toscano W, et al. A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and Examination Survey 1999-2002. Diabetes Care. 2006;29:1638–1644. - PubMed
    1. Welshons WV, Thayer KA, Judy BM, Taylor JA, Curran EM, et al. Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environ Health Perspect. 2003;111:994–1006. - PMC - PubMed
    1. Daston GP, Cook JC, Kavlock RJ. Uncertainties for endocrine disrupters: our view on progress. Toxicol Sci. 2003;74:245–252. - PubMed

Publication types