Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Feb 3:11:320-39.
doi: 10.1100/tsw.2011.22.

Anti-inflammatory and immunosuppressive effects of the A2A adenosine receptor

Affiliations
Review

Anti-inflammatory and immunosuppressive effects of the A2A adenosine receptor

Gillian R Milne et al. ScientificWorldJournal. .

Abstract

The production of adenosine represents a critical endogenous mechanism for regulating immune and inflammatory responses during conditions of stress, injury, or infection. Adenosine exerts predominantly protective effects through activation of four 7-transmembrane receptor subtypes termed A1, A2A, A2B, and A3, of which the A2A adenosine receptor (A2AAR) is recognised as a major mediator of anti-inflammatory responses. The A2AAR is widely expressed on cells of the immune system and numerous in vitro studies have identified its role in suppressing key stages of the inflammatory process, including leukocyte recruitment, phagocytosis, cytokine production, and immune cell proliferation. The majority of actions produced by A2AAR activation appear to be mediated by cAMP, but downstream events have not yet been well characterised. In this article, we review the current evidence for the anti-inflammatory effects of the A2AAR in different cell types and discuss possible molecular mechanisms mediating these effects, including the potential for generalised suppression of inflammatory gene expression through inhibition of the NF-kB and JAK/STAT proinflammatory signalling pathways. We also evaluate findings from in vivo studies investigating the role of the A2AAR in different tissues in animal models of inflammatory disease and briefly discuss the potential for development of selective A2AAR agonists for use in the clinic to treat specific inflammatory conditions.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources