Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Feb 7:11:41.
doi: 10.1186/1471-2334-11-41.

Twelve years' detection of respiratory viruses by immunofluorescence in hospitalised children: impact of the introduction of a new respiratory picornavirus assay

Affiliations

Twelve years' detection of respiratory viruses by immunofluorescence in hospitalised children: impact of the introduction of a new respiratory picornavirus assay

Christine D Sadeghi et al. BMC Infect Dis. .

Abstract

Background: Direct immunofluorescence assays (DFA) are a rapid and inexpensive method for the detection of respiratory viruses and may therefore be used for surveillance. Few epidemiological studies have been published based solely on DFA and none included respiratory picornaviruses and human metapneumovirus (hMPV). We wished to evaluate the use of DFA for epidemiological studies with a long-term observation of respiratory viruses that includes both respiratory picornaviruses and hMPV.

Methods: Since 1998 all children hospitalized with respiratory illness at the University Hospital Bern have been screened with DFA for common respiratory viruses including adenovirus, respiratory syncytial virus (RSV), influenza A and B, and parainfluenza virus 1-3. In 2006 assays for respiratory picornaviruses and hMPV were added. Here we describe the epidemiological pattern for these respiratory viruses detected by DFA in 10'629 nasopharyngeal aspirates collected from 8'285 patients during a 12-year period (1998-2010).

Results: Addition of assays for respiratory picornaviruses and hMPV raised the proportion of positive DFA results from 35% to 58% (p < 0.0001). Respiratory picornaviruses were the most common viruses detected among patients ≥ 1 year old. The seasonal patterns and age distribution for the studied viruses agreed well with those reported in the literature. In 2010, an hMPV epidemic of unexpected size was observed.

Conclusions: DFA is a valid, rapid, flexible and inexpensive method. The addition of assays for respiratory picornaviruses and hMPV broadens its range of viral detection. DFA is, even in the "PCR era", a particularly adapted method for the long term surveillance of respiratory viruses in a pediatric population.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Mean monthly distribution of respiratory viruses detected by DFA in nasopharyngeal aspirates from hospitalized children from November 2006 to April 2010. picorna = respiratory picornaviruses; hMPV = human metapneumovirus; others = adenovirus, respiratory syncytial virus, influenza A and B, parainfluenza viruses 1-3.
Figure 2
Figure 2
Monthly distribution of respiratory viruses detected by DFA in nasopharyngeal aspirates from hospitalized children between May 1998 and April 2010, with introduction of the hMPV and respiratory picornavirus assays in 2006. A: All viruses detected. B: Detailed view of ADV, IFB and PIV (note that the scale is different than in A). ADV = adenovirus; RSV = respiratory syncytial virus; IFA = influenza A; IFB = influenza B; PIV = parainfluenza viruses 1-3; hMPV = human metapneumovirus; picorna = respiratory picornaviruses.
Figure 3
Figure 3
Monthly human metapneumovirus detection by DFA in nasopharyngeal aspirates from hospitalized children between November 2006 and April 2010.
Figure 4
Figure 4
Proportion of nasopharyngeal aspirates from hospitalized children positive by DFA for respiratory viruses according to age and virus. Based on 1998-2010 data for adenovirus (ADV), respiratory syncytial virus (RSV), influenza A (IFA), influenza B (IFB) and parainfluenza viruses 1-3 (PIV). Based on 2006-2010 data for human metapneumovirus (hMPV) and respiratory picornaviruses (picorna). Note: due to a low number of samples, data for the 16-17 year olds is not shown.

References

    1. Hon KL, Nelson EA. Gender disparity in paediatric hospital admissions. Ann Acad Med Singapore. 2006;35(12):882–888. - PubMed
    1. Juven T, Mertsola J, Waris M, Leinonen M, Meurman O, Roivainen M, Eskola J, Saikku P, Ruuskanen O. Etiology of community-acquired pneumonia in 254 hospitalized children. Pediatr Infect Dis J. 2000;19(4):293–298. doi: 10.1097/00006454-200004000-00006. - DOI - PubMed
    1. Tregoning JS, Schwarze J. Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology. Clin Microbiol Rev. 2010;23(1):74–98. doi: 10.1128/CMR.00032-09. - DOI - PMC - PubMed
    1. Templeton KE. Why diagnose respiratory viral infection? J Clin Virol. 2007;40(Suppl 1):S2–4. doi: 10.1016/S1386-6532(07)70002-1. - DOI - PMC - PubMed
    1. Papadopoulos NG, Bates PJ, Bardin PG, Papi A, Leir SH, Fraenkel DJ, Meyer J, Lackie PM, Sanderson G, Holgate ST, Johnston SL. Rhinoviruses infect the lower airways. J Infect Dis. 2000;181(6):1875–1884. doi: 10.1086/315513. - DOI - PubMed

Publication types