Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Feb;11(1):64-93.
doi: 10.2174/187152611794407782.

Development of anti-viral agents using molecular modeling and virtual screening techniques

Affiliations
Review

Development of anti-viral agents using molecular modeling and virtual screening techniques

Johannes Kirchmair et al. Infect Disord Drug Targets. 2011 Feb.

Abstract

Computational chemistry has always played a key role in anti-viral drug development. The challenges and the quickly rising public interest when a virus is becoming a threat has significantly influenced computational drug discovery. The most obvious example is anti-AIDS research, where HIV protease and reverse transcriptase have triggered enormous efforts in developing and improving computational methods. Methods applied to anti-viral research include (i) ligand-based approaches that rely on known active compounds to extrapolate biological activity, such as machine learning techniques or classical QSAR, (ii) structure-based methods that rely on an experimentally determined 3D structure of the targets, such as molecular docking or molecular dynamics, and (iii) universal approaches that can be applied in a structure- or ligand-based way, such as 3D QSAR or 3D pharmacophore elucidation. In this review we summarize these molecular modeling approaches as they were applied to fight anti-viral diseases and highlight their importance for anti-viral research. We discuss the role of computational chemistry in the development of small molecules as agents against HIV integrase, HIV-1 protease, HIV-1 reverse transcriptase, the influenza virus M2 channel protein, influenza virus neuraminidase, the SARS coronavirus main proteinase and spike protein, thymidine kinases of herpes viruses, hepatitis c virus proteins and other flaviviruses as well as human rhinovirus coat protein and proteases, and other picornaviridae. We highlight how computational approaches have helped in discovering anti-viral activities of natural products and give an overview on polypharmacology approaches that help to optimize drugs against several viruses or help to optimize the metabolic profile of and anti-viral drug.

PubMed Disclaimer

MeSH terms

LinkOut - more resources