Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jan 31;6(1):e14640.
doi: 10.1371/journal.pone.0014640.

The development and characterization of a human mesothelioma in vitro 3D model to investigate immunotoxin therapy

Affiliations

The development and characterization of a human mesothelioma in vitro 3D model to investigate immunotoxin therapy

Xinran Xiang et al. PLoS One. .

Abstract

Background: Tumor microenvironments present significant barriers to penetration by antibodies and immunoconjugates. Tumor microenvironments, however, are difficult to study in vitro. Cells cultured as monolayers exhibit less resistance to therapy than those grown in vivo and an alternative research model more representative of the in vivo tumor is more desirable. SS1P is an immunotoxin composed of the Fv portion of a mesothelin-specific antibody fused to a bacterial toxin that is presently undergoing clinical trials in mesothelioma.

Methodology/principal findings: Here, we examined how the tumor microenvironment affects the penetration and killing activity of SS1P in a new three-dimensional (3D) spheroid model cultured in vitro using the human mesothelioma cell line (NCI-H226) and two primary cell lines isolated from the ascites of malignant mesothelioma patients. Mesothelioma cells grown as monolayers or as spheroids expressed comparable levels of mesothelin; however, spheroids were at least 100 times less affected by SS1P. To understand this disparity in cytotoxicity, we made fluorescence-labeled SS1P molecules and used confocal microscopy to examine the time course of SS1P penetration within spheroids. The penetration was limited after 4 hours. Interestingly, we found a significant increase in the number of tight junctions in the core area of spheroids by electron microscopy. Expression of E-Cadherin, a protein involved in the assembly and sealing of tight junctions and highly expressed in malignant mesothelioma, was found significantly increased in spheroids as compared to monolayers. Moreover, we found that siRNA silencing and antibody inhibition targeting E-Cadherin could enhance SS1P immunotoxin therapy in vitro.

Conclusion/significance: This work is one of the first to investigate immunotoxins in 3D tumor spheroids in vitro. This initial description of an in vitro tumor model may offer a simple and more representative model of in vivo tumors and will allow for further investigations of the microenvironmental effects on drug penetration and tumor cell killing. We believe that the methods developed here may apply to the studies of other tumor-targeting antibodies and immunoconjugates in vitro.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: KN is employed at SAIC-Frederick, but is funded by NCI. SAIC provided no funds for this research. KN provided analytical support. This does not alter the authors' adherence to all the PLoS ONE policies on sharing data and materials.

Figures

Figure 1
Figure 1. Establishment of human mesothelioma spheroids.
A. Monolayers and spheroids of human mesothelioma cell line, NCI-H226, and primary mesothelioma lines NCI-M-03 and NCI-M-13. Scale bars, 400 µm (except 200 µm for NCI-M-13 spheroids). B. Immunohistochemical staining of an NCI-H226 spheroid (see Methods ). (a) Mesothelin stains both the membrane and cytoplasm. (b) Calretinin stains both the nuclei and cytoplasm. (c) HBME-1 exhibits a focal membranous staining pattern (arrows). (d) Cytokeratin 5/6 exhibits a focal cytoplasmic staining pattern. (e) WT-1 stains the nuclei. (f) Thrombomodulin exhibits a focal membranous staining pattern close to the rim (arrows).
Figure 2
Figure 2. Anti-tumor immunotoxin activity on mesothelioma monolayers and spheroids.
Cells treated with SS1P and BL22. A. Cell growth inhibition (WST-8 assays) of NCI-H226. IC50 of SS1P for spheroids was >1000 ng/mL. IC50 for monolayers was ∼10 ng/mL. B. Cell viability (CellTiter-Glo Luminescent assays) of NCI-H226. IC50 of SS1P for spheroids was >1000 ng/mL. IC50 for monolayers was ∼5 ng/mL. C. Primary mesothelioma lines NCI-M-03 and NCI-M-13 treated with 100 ng/mL of SS1P. 2D, monolayers; 3D, spheroids. *p<0.01.
Figure 3
Figure 3. Mesothelin expression in mesothelioma monolayers and spheroids.
NCI-H226 cells incubated with an anti-mesothelin mAb (MN) and detected with goat anti-mouse IgG conjugated with Alexa488 by flow cytometry.
Figure 4
Figure 4. Penetration of Alexa488-labeled immunotoxin SS1P in tumor spheroids.
A. SS1P labeled with Alexa488 (green fluorescence). A cross section close to the middle of an NCI-H226 spheroid evaluated at hours 0, 8 and 16 using confocal microscopy. B. Overlay of bright field and fluorescence images of a spheroid. C. Mean fluorescence intensity of SS1P (see Methods ). Scale bars, 400 µm.
Figure 5
Figure 5. Electron microscopy of cell contacts in NCI-H226 mesothelioma spheroids.
A and B. SEM analysis showing microvilli (arrow). Scale bars, 200 µm (A) and 10 µm (B). C and D. Ultrathin sections (TEM). Presence of intracellular tight junctions (arrow). Scale bar, 0.5 µm. E. Number of cellular junctions in the core and rim areas.
Figure 6
Figure 6. Expression of cell junction and Bcl-2 signaling proteins in NCI-H226 monolayers and spheroids.
A. Protein expression of E-Cadherin, ZO-1, Connexin-32, Mcl-1, Bcl-xL, Bid, Bak, Bax, and β-actin examined by Western blot. B. Molecular mechanisms underlying drug resistance in tumor spheroids.
Figure 7
Figure 7. Sensitizing spheroids to immunotoxin therapy in vitro.
A. Silencing E-Cadherin expression by siRNA. siE-Cad, E-Cadherin siRNA. 2D: monolayers; 3D: spheroids. B. Silencing E-Cadherin enhanced the anti-tumor activity of SS1P. Cell growth was assessed by incubation with WST-8 with values normalized (%) relative to the growth of the non-silencing siRNA (* p<0.05). C and D. An anti-adhesive mAb targeting E-Cadherin (SHE78-7) enhanced the anti-tumor activity of SS1P when added before the formation of spheroids (Pre) (* p<0.05), but not after (Post). Arrow, lysed cell debris. Scale bars, 400 µm. NS, not significant.

Similar articles

Cited by

References

    1. Jain RK. Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng. 1999;1:241–263. - PubMed
    1. Desoize B, Jardillier J. Multicellular resistance: a paradigm for clinical resistance? Crit Rev Oncol Hematol. 2000;36:193–207. - PubMed
    1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70. - PubMed
    1. Johnstone RW, Ruefli AA, Lowe SW. Apoptosis – A link between cancer genetics and chemotherapy. Cell. 2002;108:153–164. - PubMed
    1. Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer. 2001;84:1424–1431. - PMC - PubMed

Publication types