Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jan 1;7(1):24-36.
doi: 10.3233/XST-1997-7103.

Influence of the Number of Bilayers on the Optical Performances of X-UV Multilayer Interferential Mirrors

Affiliations

Influence of the Number of Bilayers on the Optical Performances of X-UV Multilayer Interferential Mirrors

C Guichet et al. J Xray Sci Technol. .

Abstract

The influence of the number of bilayers on the optical performances of actual X-UV multilayer interferential mirrors (MIMs) has been studied in order to emphasize the experimental restrictions in the designing of "thick" mirrors used for the development of etched multilayer gratings. Several sets of samples (W/C, Mo/Si) with increasing number of bilayers have been manufactured in the very same conditions by means of a sputtering technique. X-ray diffraction characterization at Cu-Kα radiation (λ = 1.54018 Å) exhibits technical constraints in the achievement of multilayer structures with large number of bilayers. We obtain a gradual loss of reflectivity for deposition times greater than 1h 30 min to 2h without significant drift of the MIM's geometrical parameters (period and division parameter). In the same time, absolute reflectivity measurements at Cu-Lα radiation (λ = 1.333 nm) emphasize satisfying optical and spectroscopic performances of W/C thick samples ( 150 bilayers).

PubMed Disclaimer

Similar articles

LinkOut - more resources