Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Feb;33(4):577-88.
doi: 10.1111/j.1460-9568.2010.07584.x.

The role(s) of astrocytes and astrocyte activity in neurometabolism, neurovascular coupling, and the production of functional neuroimaging signals

Affiliations
Review

The role(s) of astrocytes and astrocyte activity in neurometabolism, neurovascular coupling, and the production of functional neuroimaging signals

Chase R Figley et al. Eur J Neurosci. 2011 Feb.

Abstract

Data acquired with functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) are often interpreted in terms of the underlying neuronal activity, despite mounting evidence that these signals do not always correlate with electrophysiological recordings. Therefore, considering the increasing popularity of functional neuroimaging, it is clear that a more comprehensive theory is needed to reconcile these apparent disparities and more accurately explain the mechanisms through which various PET and fMRI signals arise. In the present article, we have turned our attention to astrocytes, which vastly outnumber neurons and are known to serve a number of functions throughout the central nervous system (CNS). For example, astrocytes are known to be critically involved in neurotransmitter uptake and recycling, and empirical data suggests that brain activation increases both oxidative and glycolytic astrocyte metabolism. Furthermore, a number of recent studies imply that astrocytes are likely to play a key role in regulating cerebral blood delivery. Therefore, we propose that, by mediating neurometabolic and neurovascular processes throughout the CNS, astrocytes could provide a common physiological basis for fMRI and PET signals. Such a theory has significant implications for the interpretation of functional neuroimaging signals, because astrocytic changes reflect subthreshold neuronal activity, simultaneous excitatory/inhibitory synaptic inputs, and other transient metabolic demands that may not elicit electrophysiological changes. It also suggests that fMRI and PET signals may have inherently less sensitivity to decreases in synaptic input (i.e. 'negative activity') and/or inhibitory (GABAergic) neurotransmission.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources