Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2011 Apr 18:1385:257-62.
doi: 10.1016/j.brainres.2011.02.007. Epub 2011 Mar 5.

Glibenclamide ameliorates ischemia-reperfusion injury via modulating oxidative stress and inflammatory mediators in the rat hippocampus

Affiliations
Comparative Study

Glibenclamide ameliorates ischemia-reperfusion injury via modulating oxidative stress and inflammatory mediators in the rat hippocampus

Dalaal M Abdallah et al. Brain Res. .

Abstract

Stroke remains a debilitating disease with high incidence of morbidity and mortality, where many reports provide promising venues for prevention/treatment of such ailment. Glibenclamide, a selective blocker of KATP channels, was reported to protect against ischemia and ischemia-reperfusion (IR) injury in several experimental models. Hence, the present study aimed to investigate the possible involvement of free radicals as well as inflammatory and anti-inflammatory mediators in the hippocampus of rats exposed to IR. To this end, male Wistar rats were divided into 3 groups: group I served as sham operated controls; group II was subjected to 15 min ischemia by occlusion of both common carotid arteries, followed by 60 min reperfusion; group III was injected with glibenclamide (1mg/kg, i.p.) 10 min before ischemic-reperfusion injury. IR increased lipid peroxides, myeloperoxidase activity, TNF-α and PGE(2), while decreasing glutathione, total antioxidant capacity, nitric oxide and IL-10 levels in the hippocampus. Glibenclamide reversed all the former alterations, thus highlighting a potential therapeutic utility for this sulphonyl urea in IR brain injury via modulating oxidative stress and inflammatory mediators.

PubMed Disclaimer

Publication types

LinkOut - more resources