Safety assessment of probiotics for human use
- PMID: 21327023
- PMCID: PMC3023597
- DOI: 10.4161/gmic.1.3.12127
Safety assessment of probiotics for human use
Abstract
The safety of probiotics is tied to their intended use, which includes consideration of potential vulnerability of the consumer or patient, dose and duration of consumption, and both the manner and frequency of administration. Unique to probiotics is that they are alive when administered, and unlike other food or drug ingredients, possess the potential for infectivity or in situ toxin production. Since numerous types of microbes are used as probiotics, safety is also intricately tied to the nature of the specific microbe being used. The presence of transferable antibiotic resistance genes, which comprises a theoretical risk of transfer to a less innocuous member of the gut microbial community, must also be considered. Genetic stability of the probiotic over time, deleterious metabolic activities, and the potential for pathogenicity or toxicogenicity must be assessed depending on the characteristics of the genus and species of the microbe being used. Immunological effects must be considered, especially in certain vulnerable populations, including infants with undeveloped immune function. A few reports about negative probiotic effects have surfaced, the significance of which would be better understood with more complete understanding of the mechanisms of probiotic interaction with the host and colonizing microbes. Use of readily available and low cost genomic sequencing technologies to assure the absence of genes of concern is advisable for candidate probiotic strains. The field of probiotic safety is characterized by the scarcity of studies specifically designed to assess safety contrasted with the long history of safe use of many of these microbes in foods.
Keywords: FDA; Health Canada; PROSAFE; QPS; antibiotic resistance; bifidobacterium; lactobacillus; probiotic; safety.
Figures
References
-
- Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria. 2001. [2009]. http://www.who.int/foodsafety/publications/fs_management/en/probiotics.pdf.
-
- Cannon JP, Lee TA, Bolanos JT, Danziger LH. Pathogenic relevance of Lactobacillus: a retrospective review of over 200 cases. Eur J Clin Microbiol Infect Dis. 2005;24:125–126. - PubMed
-
- Land MH, Rouster-Stevens K, Woods CR, Cannon ML, Cnota J, Shetty AK. Lactobacillus sepsis associated with probiotic therapy. Pediatrics. 2005;115:178–181. - PubMed
-
- Salminen MK, Rautelin H, Tynkkynen S, Poussa T, Saxelin M, Valtonen V, et al. Lactobacillus bacteremia, species identification and antimicrobial susceptibility of 85 blood isolates. Clin Infect Dis. 2006;42:35–44. - PubMed
-
- Bernardeau M, Guguen M, Vernoux JP. Beneficial lactobacilli in food and feed: long-term use, biodiversity and proposals for specific and realistic safety assessments. FEMS Microbiol Rev. 2006;30:487–513. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical