Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Mar;112(3):761-72.
doi: 10.1002/jcb.23004.

Roscovitine, a selective CDK inhibitor, reduces the basal and estrogen-induced phosphorylation of ER-α in human ER-positive breast cancer cells

Affiliations

Roscovitine, a selective CDK inhibitor, reduces the basal and estrogen-induced phosphorylation of ER-α in human ER-positive breast cancer cells

Józefa Węsierska-Gądek et al. J Cell Biochem. 2011 Mar.

Abstract

Roscovitine (ROSC), a selective cyclin-dependent kinase (CDK) inhibitor, arrests human estrogen receptor-α (ER-α) positive MCF-7 breast cancer cells in the G(2) phase of the cell cycle and concomitantly induces apoptosis via a p53-dependent pathway. The effect of ROSC is markedly diminished in MCF-7 cells maintained in the presence of estrogen-mimicking compounds. Therefore, we decided to examine whether ROSC has any effect on the functional status of the ER-α transcription factor. Exposure of MCF-7 cells to ROSC abolished the activating phosphorylation of CDK2 and CDK7 in a concentration and time-dependent manner. This inhibition of site-specific modification of CDK7 at Ser164/170 prevented phosphorylation of RNA polymerase II and reduced basal phosphorylation of ER-α at Ser118 in non-stimulated MCF-7 cells (resulting in its down-regulation). In MCF-7 cells, estrogen induced strong phosphorylation of ER-α at Ser118 but not at Ser104/Ser106. ROSC prevented this estrogen-promoted activating modification of ER-α. Furthermore, we sought to determine whether the activity of ROSC could be enhanced by combining it with an anti-estrogen. Tamoxifen (TAM), a selective estrogen receptor modulator (SERM), affected breast cancer cell lines irrespective of their ER status. In combination with ROSC, however, it had a different impact, enhancing G(1) or G(2) arrest. Our results indicate that ROSC prevents the activating phosphorylation of ER-α and that its mode of action is strongly dependent on the cellular context. Furthermore, our data show that ROSC can be combined with anti-estrogen therapy. The inhibitory effect of TAM on ER-negative cancer cells indicates that SERMs crosstalk with other steroid hormone receptors.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources