Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011:3:123-45.
doi: 10.1146/annurev-marine-120709-142723.

Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?

Affiliations
Review

Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?

Wei-Jun Cai. Ann Rev Mar Sci. 2011.

Abstract

Estuaries are a major boundary in the land-ocean interaction zone where organic carbon (OC) and nutrients are being processed, resulting in a high water-to-air carbon dioxide (CO2) flux (approximately 0.25 Pg C y(-1)). The continental shelves, however, take up CO2 (approximately 0.25 Pg C y(-1)) from the atmosphere, accounting for approximately 17% of open ocean CO2 uptake (1.5 Pg Cy(-1)). It is demonstrated here that CO2 release in estuaries is largely supported by microbial decomposition of highly productive intertidal marsh biomass. It appears that riverine OC, however, would bypass the estuarine zone, because of short river-transit times, and contribute to carbon cycling in the ocean margins and interiors. Low-latitude ocean margins release CO2 because they receive two-thirds of the terrestrial OC. Because of recent CO2 increase in the atmosphere, CO2 releases from low latitudes have become weaker and CO2 uptake by mid- and high-latitude shelves has become stronger, thus leading to more dissolved inorganic carbon export to the ocean.

PubMed Disclaimer

Publication types

LinkOut - more resources