An efficient algorithm for retinal blood vessel segmentation using h-maxima transform and multilevel thresholding
- PMID: 21331960
- DOI: 10.1080/10255842.2010.545949
An efficient algorithm for retinal blood vessel segmentation using h-maxima transform and multilevel thresholding
Abstract
Retinal blood vessel detection and analysis play vital roles in early diagnosis and prevention of several diseases, such as hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. This paper presents an automated algorithm for retinal blood vessel segmentation. The proposed algorithm takes advantage of powerful image processing techniques such as contrast enhancement, filtration and thresholding for more efficient segmentation. To evaluate the performance of the proposed algorithm, experiments were conducted on 40 images collected from DRIVE database. The results show that the proposed algorithm yields an accuracy rate of 96.5%, which is higher than the results achieved by other known algorithms.
Similar articles
-
Segmentation of blood vessels from red-free and fluorescein retinal images.Med Image Anal. 2007 Feb;11(1):47-61. doi: 10.1016/j.media.2006.11.004. Epub 2007 Jan 3. Med Image Anal. 2007. PMID: 17204445
-
A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features.IEEE Trans Med Imaging. 2011 Jan;30(1):146-58. doi: 10.1109/TMI.2010.2064333. Epub 2010 Aug 9. IEEE Trans Med Imaging. 2011. PMID: 20699207
-
An automated blood vessel segmentation algorithm using histogram equalization and automatic threshold selection.J Digit Imaging. 2011 Aug;24(4):564-72. doi: 10.1007/s10278-010-9302-9. J Digit Imaging. 2011. PMID: 20524139 Free PMC article.
-
Blood vessel segmentation in color fundus images based on regional and Hessian features.Graefes Arch Clin Exp Ophthalmol. 2017 Aug;255(8):1525-1533. doi: 10.1007/s00417-017-3677-y. Epub 2017 May 4. Graefes Arch Clin Exp Ophthalmol. 2017. PMID: 28474130 Review.
-
Delineation of blood vessels in pediatric retinal images using decision trees-based ensemble classification.Int J Comput Assist Radiol Surg. 2014 Sep;9(5):795-811. doi: 10.1007/s11548-013-0965-9. Epub 2013 Dec 24. Int J Comput Assist Radiol Surg. 2014. PMID: 24366332 Review.
Cited by
-
DR HAGIS-a fundus image database for the automatic extraction of retinal surface vessels from diabetic patients.J Med Imaging (Bellingham). 2017 Jan;4(1):014503. doi: 10.1117/1.JMI.4.1.014503. Epub 2017 Feb 9. J Med Imaging (Bellingham). 2017. PMID: 28217714 Free PMC article.
-
A Review on Recent Developments for Detection of Diabetic Retinopathy.Scientifica (Cairo). 2016;2016:6838976. doi: 10.1155/2016/6838976. Epub 2016 Sep 29. Scientifica (Cairo). 2016. PMID: 27777811 Free PMC article. Review.
-
A new blood vessel extraction technique using edge enhancement and object classification.J Digit Imaging. 2013 Dec;26(6):1107-15. doi: 10.1007/s10278-013-9585-8. J Digit Imaging. 2013. PMID: 23515843 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources