Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 May;235(1):78-90.
doi: 10.1016/j.expneurol.2011.02.010. Epub 2011 Feb 17.

Cell-based transplantation strategies to promote plasticity following spinal cord injury

Affiliations
Review

Cell-based transplantation strategies to promote plasticity following spinal cord injury

Crystal A Ruff et al. Exp Neurol. 2012 May.

Abstract

Cell transplantation therapy holds potential for repair and functional plasticity following spinal cord injury (SCI). Stem and progenitor cells are capable of modifying the lesion environment, providing structural support and myelination and increasing neurotrophic factors for neuroprotection and endogenous activation. Through these effects, transplanted cells induce plasticity in the injured spinal cord by promoting axonal elongation and collateral sprouting, remyelination, synapse formation and reduced retrograde axonal degeneration. In light of these beneficial effects, cell transplantation could be combined with other treatment modalities, such as rehabilitation and immune modulation, to provide a synergistic functional benefit. This review will delineate 1) stem/progenitor cell types proposed for cell transplantation in SCI, 2) in vitro evidence of cell-induced mechanisms of plasticity, 3) promotion of functional recovery in animal models of SCI, 4) successful combinatorial strategies using cell transplantation. Current treatment modalities for SCI provide modest efficacy, especially in chronic stages of SCI. Hence, combinatorial stem cell transplantation strategies which could potentially directly address tissue sparing and neuroplasticity in chronic SCI show promise. Rigorous evaluation of combinatorial approaches using stem cell transplantation with appropriate preclinical animal models of SCI is needed to advance therapeutic strategies to the point where clinical trials are appropriate. Given the high patient demand for and clinical trial precedent of cell transplantation therapy, combination stem cell therapies have the promise to provide improved quality of life for individuals, with corresponding socioeconomic benefit.

PubMed Disclaimer

MeSH terms