Oxytocin antagonist disrupts male mouse medial amygdala response to chemical-communication signals
- PMID: 21333718
- PMCID: PMC3093756
- DOI: 10.1016/j.neuroscience.2011.02.030
Oxytocin antagonist disrupts male mouse medial amygdala response to chemical-communication signals
Abstract
The male mouse medial amygdala is an important site for integration of main and accessory olfactory information. Exposure to biologically relevant chemical signals from the same species (conspecific) results in a general pattern of immediate early gene (IEG) expression in medial amygdala different from that elicited by chemical signals from other species (heterospecific), of no demonstrable biological relevance. The neuropeptide oxytocin (OT) in the medial amygdala has been shown to be necessary for social recognition. In the present set of experiments, male mice with i.c.v. cannulae were injected with either PBS (vehicle control) or oxytocin antagonist (OTA) (1 ng in 1 μl PBS) and exposed to conspecific (female mouse urine) and heterospecific (steer urine and worn cat collar) chemical stimuli. Similarly to our previous report with intact male mice [Samuelsen and Meredith (2009a) Brain Res 1263:33-42], PBS-injected mice exhibited different immediate early gene (IEG) expression patterns in the medial amygdala according to the biological relevance of the chemical stimuli. However, OTA injection eliminates the increase in IEG expression in the medial amygdala to any of the tested conspecific or heterospecific stimuli. Importantly, OTA injection disrupts avoidance of an unfamiliar predator odor, worn cat collar. Here we suggest that the disruption of social recognition behavior in male mice with altered OT receptor activity results from an inability of the medial amygdala to process relevant conspecific (and heterospecific) chemosensory signals.
Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Figures
References
-
- Agmo A, Choleris E, Kavaliers M, Pfaff DW, Ogawa S. Social and sexual incentive properties of estrogen receptor alpha, estrogen receptor beta, or oxytocin knockout mice. Genes Brain Behav. 2008;7(1):70–7. - PubMed
-
- Apfelbach R, Blanchard CD, Blanchard RJ, Hayes RA, McGregor IS. The effects of predator odors in mammalian prey species: a review of field and laboratory studies. Neurosci Biobehav Rev. 2005;29(8):1123–44. - PubMed
-
- Blanchard RJ, Blanchard DC. Antipredator defensive behaviors in a visible burrow system. J Comp Psychol. 1989;103:70–82. - PubMed
-
- Blanchard DC, Canteras NS, Markham CM, Pentkowski NS, Blanchard RJ. Lesions of structures showing FOS expression to cat presentation: Effects on responsivity to a Cat, Cat odor, and nonpredator threat. Neurosci Biobehav Rev. 2005;29(8):1243–53. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
