Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Mar 21;56(6):1601-16.
doi: 10.1088/0031-9155/56/6/006. Epub 2011 Feb 18.

Heterogeneity in DCE-MRI parametric maps: a biomarker for treatment response?

Affiliations

Heterogeneity in DCE-MRI parametric maps: a biomarker for treatment response?

L Alic et al. Phys Med Biol. .

Abstract

This study aims to quantify the heterogeneity of tumour enhancement in dynamic contrast-enhanced MRI (DCE-MRI) using texture analysis methods. The suitability of the coherence and the fractal dimension to monitor tumour response was evaluated in 18 patients with limb sarcomas imaged by DCE-MRI pre- and post-treatment. According to the histopathology, tumours were classified into responders and non-responders. Pharmacokinetic (K(trans)) and heuristic model-based parametric maps (slope, max enhancement, AUC) were computed from the DCE-MRI data. A substantial correlation was found between the pharmacokinetic and heuristic model-based parametric maps: ρ = 0.56 for the slope, ρ = 0.44 for maximum enhancement, and ρ = 0.61 for AUC. From all four parametric maps, the enhancing fraction, and the heterogeneity features (i.e. coherence and fractal dimension) were determined. In terms of monitoring tumour response, using both pre- and post-treatment DCE-MRI, the enhancing fraction and the coherence showed significant differences between the response group and the non-response group (i.e. the highest sensitivity (91%) for K(trans), and the highest specificity (83%) for max enhancement). In terms of treatment prediction, using solely the pre-treatment DCE-MRI, the enhancing fraction and coherence discriminated between responders and non-responders. For prediction, the highest sensitivity (91%) was shared by K(trans), slope and max enhancement, and the highest specificity (71%) was achieved by K(trans). On average, tumours that responded showed a high enhancing fraction and high coherence on the pre-treatment scan. These results suggest that specific heterogeneity features, computed from both pharmacokinetic and heuristic model-based parametric maps, show potential as a biomarker for monitoring tumour response.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources