Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Apr 1;141(4):740S-746S.
doi: 10.3945/jn.110.131169. Epub 2011 Feb 23.

Early iron deficiency has brain and behavior effects consistent with dopaminergic dysfunction

Affiliations
Review

Early iron deficiency has brain and behavior effects consistent with dopaminergic dysfunction

Betsy Lozoff. J Nutr. .

Abstract

To honor the late John Beard's many contributions regarding iron and dopamine biology, this review focuses on recent human studies that test specific hypotheses about effects of early iron deficiency on dopamine system functioning. Short- and long-term alterations associated with iron deficiency in infancy can be related to major dopamine pathways (mesocortical, mesolimbic, nigrostriatal, tuberohypophyseal). Children and young adults who had iron deficiency anemia in infancy show poorer inhibitory control and executive functioning as assessed by neurocognitive tasks where pharmacologic and neuroimaging studies implicate frontal-striatal circuits and the mesocortical dopamine pathway. Alterations in the mesolimbic pathway, where dopamine plays a major role in behavioral activation and inhibition, positive affect, and inherent reward, may help explain altered social-emotional behavior in iron-deficient infants, specifically wariness and hesitance, lack of positive affect, diminished social engagement, etc. Poorer motor sequencing and bimanual coordination and lower spontaneous eye blink rate in iron-deficient anemic infants are consistent with impaired function in the nigrostriatal pathway. Short- and long-term changes in serum prolactin point to dopamine dysfunction in the tuberohypophyseal pathway. These hypothesis-driven findings support the adverse effects of early iron deficiency on dopamine biology. Iron deficiency also has other effects, specifically on other neurotransmitters, myelination, dendritogenesis, neurometabolism in hippocampus and striatum, gene and protein profiles, and associated behaviors. The persistence of poorer cognitive, motor, affective, and sensory system functioning highlights the need to prevent iron deficiency in infancy and to find interventions that lessen the long-term effects of this widespread nutrient disorder.

PubMed Disclaimer

Conflict of interest statement

Author disclosures: B. Lozoff, no conflicts of interest.

References

    1. Oski FA, Honig AS. The effects of therapy on the developmental scores of iron-deficient infants. J Pediatr. 1978;92:21–5 - PubMed
    1. Dallman PR, Siimes M, Manies EC. Brain iron: persistent deficiency following short-term iron deprivation in the young rat. Br J Haematol. 1975;31:209–15 - PubMed
    1. Dallman PR, Spirito RA. Brain iron in the rat: extremely slow turnover in normal rats may explain long-lasting effects of early iron deficiency. J Nutr. 1977;107:1075–81 - PubMed
    1. Youdim MBH. Brain iron: neurochemical and behavioural aspects. London: Taylor & Francis; 1988
    1. Beard JL, Connor JR. Iron status and neural functioning. Annu Rev Nutr. 2003;23:41–58 - PubMed

Publication types