CXCL12 (SDF1alpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies?
- PMID: 21349998
- PMCID: PMC3079023
- DOI: 10.1158/1078-0432.CCR-10-2636
CXCL12 (SDF1alpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies?
Abstract
Addition of multiple molecularly targeted agents to the existing armamentarium of chemotherapeutics and radiotherapies represents a significant advance in the management of several advanced cancers. In certain tumor types with no efficacious therapy options, these agents have become the first line of therapy, for example, sorafenib in advanced hepatocellular carcinoma or bevacizumab in recurrent glioblastoma. Unfortunately, in many cases, the survival benefits are modest, lasting only weeks to a few months. Moreover, they may not show benefit in patients with localized disease (i.e., in the adjuvant setting). Recent studies have provided increasing evidence that activation of the chemokine CXCL12 (SDF1α) pathway is a potential mechanism of tumor resistance to both conventional therapies and biological agents via multiple complementary actions: (i) by directly promoting cancer cell survival, invasion, and the cancer stem and/or tumor-initiating cell phenotype; (ii) by recruiting "distal stroma" (i.e., myeloid bone marrow-derived cells) to indirectly facilitate tumor recurrence and metastasis; and (iii) by promoting angiogenesis directly or in a paracrine manner. Here, we discuss recent preclinical and clinical data that support the potential use of anti-CXCL12 agents (e.g., AMD3100, NOX-A12, or CCX2066) as sensitizers to currently available therapies by targeting the CXCL12/CXCR4 and CXCL12/CXCR7 pathways.
©2011 AACR.
Figures
References
-
- Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. New Engl J Med. 2004;350:2335–42. - PubMed
-
- Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. New Engl J Med. 2006;355:2542–50. - PubMed
-
- Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. New Engl J Med. 2008;359:378–90. - PubMed
-
- Friedman HS, Prados MD, Wen PY, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009;27:4733–40. - PubMed
-
- Jain RK, Duda DG, Clark JW, Loeffler JS. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol. 2006;3:24–40. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- T32 CA073479/CA/NCI NIH HHS/United States
- R01 CA126642/CA/NCI NIH HHS/United States
- R01-CA085140/CA/NCI NIH HHS/United States
- R01 CA085140/CA/NCI NIH HHS/United States
- R21 CA139168/CA/NCI NIH HHS/United States
- R01-CA115767/CA/NCI NIH HHS/United States
- P01-CA080124/CA/NCI NIH HHS/United States
- R01-CA096915/CA/NCI NIH HHS/United States
- R01 CA159258/CA/NCI NIH HHS/United States
- R01 CA115767/CA/NCI NIH HHS/United States
- P01 CA080124/CA/NCI NIH HHS/United States
- R21-CA139168/CA/NCI NIH HHS/United States
- R01-CA126642/CA/NCI NIH HHS/United States
- R01 CA096915/CA/NCI NIH HHS/United States
- T32-CA073479/CA/NCI NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
