Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Aug;11(8):899-906.
doi: 10.1016/j.intimp.2011.02.001. Epub 2011 Feb 26.

Inhibition of airway inflammation, hyperresponsiveness and remodeling by soy isoflavone in a murine model of allergic asthma

Affiliations

Inhibition of airway inflammation, hyperresponsiveness and remodeling by soy isoflavone in a murine model of allergic asthma

Zhao-Seng Bao et al. Int Immunopharmacol. 2011 Aug.

Abstract

Epidemiologic studies have associated higher dietary consumption of soy isoflavones with decreased self-report of cough and allergic respiratory symptoms, but the pharmacodynamic effects of soy isoflavone on asthmatic model have not been well-described. Here, we hypothesized that soy isoflavone may have potential effects on airway hyperresponsiveness, inflammation and airway remodeling in a murine of asthma. Mice sensitized and challenged with ovalbumin developed airway inflammation. Bronchoalveolar lavage fluid was assessed for inflammatory cell counts, and for cytokine levels. Lung tissues were examined for cell infiltration, mucus hypersecretion and airway remodeling, and for the expression of inflammatory biomarkers. Airway hyperresponsiveness was monitored by direct airway resistance analysis. Oral administration of soy isoflavone significantly reduced ovalbumin-induced airway hyperresponsiveness to intravenous methacholine, and inhibited ovalbumin-induced increases in eosinophil counts. RT-PCR analysis of whole lung lysates revealed that soy isoflavone markedly suppressed ovalbumin-induced mRNA expression of eotaxin, interleukin(IL)-5, IL-4 and matrix metalloproteinase-9, and increased mRNA expression of interferon (IFN)-γ and tissue inhibitor of metalloproteinase-1 in a dose-dependent manner. Soy isoflavone also substantially recovered IFN-γ/IL-4 (Th1/Th2) levels in bronchoalveolar lavage fluid. In addition, histologic studies showed that soy isoflavone dramatically inhibited ovalbumin-induced lung tissue eosinophil infiltration, airway mucus production and collagen deposition in lung tissues. Our findings suggest that soy isoflavone as nutritional supplement may provide a novel means for the treatment of airway inflammatory disease.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms