Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Mar 2;13(3):294-307.
doi: 10.1016/j.cmet.2011.01.018.

Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle

Affiliations
Free article

Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle

Tetsuya Kubota et al. Cell Metab. .
Free article

Abstract

In obese patients with type 2 diabetes, insulin delivery to and insulin-dependent glucose uptake by skeletal muscle are delayed and impaired. The mechanisms underlying the delay and impairment are unclear. We demonstrate that impaired insulin signaling in endothelial cells, due to reduced Irs2 expression and insulin-induced eNOS phosphorylation, causes attenuation of insulin-induced capillary recruitment and insulin delivery, which in turn reduces glucose uptake by skeletal muscle. Moreover, restoration of insulin-induced eNOS phosphorylation in endothelial cells completely reverses the reduction in capillary recruitment and insulin delivery in tissue-specific knockout mice lacking Irs2 in endothelial cells and fed a high-fat diet. As a result, glucose uptake by skeletal muscle is restored in these mice. Taken together, our results show that insulin signaling in endothelial cells plays a pivotal role in the regulation of glucose uptake by skeletal muscle. Furthermore, improving endothelial insulin signaling may serve as a therapeutic strategy for ameliorating skeletal muscle insulin resistance.

PubMed Disclaimer

Comment in

Publication types