Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jan;148(2):189-201.
doi: 10.1093/rpd/ncr021. Epub 2011 Feb 25.

Patient-size-dependent radiation dose optimisation technique for abdominal CT examinations

Affiliations

Patient-size-dependent radiation dose optimisation technique for abdominal CT examinations

J E Ngaile et al. Radiat Prot Dosimetry. 2012 Jan.

Abstract

Since patient doses from computed tomography (CT) are relatively high, risk-benefit analysis requires dose to patients and image quality be optimised. The aim of this study was to develop a patient-dependent optimisation technique that uses patient diameter to select a combination of CT scanning parameters that minimise dose delivered to patients undergoing abdominal CT examinations. The study was performed using cylindrical phantoms of diameters ranging from 16 to 40 cm in order to establish the relationship between image degradation, CT scanning techniques, patient dose and patient size from two CT scanners. These relationships were established by scanning the phantoms using standard scanning technique followed by selected combinations of scanning parameters. The image noises through phantom images were determined using region of interest software available in both scanners. The energy depositions to the X-ray detector through phantoms were determined from measurements of CT dose index in air corrected for attenuation of the phantom materials. The results demonstrate that exposure settings (milliampere seconds) could be reduced by up to 82 % for smaller phantom relative to standard milliampere seconds, while detector signal could be reduced by up to 93 % for smaller phantom relative to energy depositions required when scanned using standard scanning protocols. It was further revealed that the use of the object-specific scanning parameters on studies performed with phantom of different diameters could reduce the incident radiation to small size object by up to 86 % to obtain the same image quality required for standard adult object. In view of the earlier mentioned fact, substantial dose saving from small-sized adults and children patients undergoing abdomen CT examinations could be achieved through optimal adjustment of CT scanning technique based on the patient transverse diameter.

PubMed Disclaimer

Similar articles

Publication types