Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Apr 27;91(8):811-9.
doi: 10.1097/TP.0b013e3182111f01.

Human corneal endothelial cell expansion for corneal endothelium transplantation: an overview

Affiliations
Review

Human corneal endothelial cell expansion for corneal endothelium transplantation: an overview

Gary S L Peh et al. Transplantation. .

Abstract

The monolayer of cells forming the human corneal endothelium is critical to the maintenance of corneal transparency and is not known to regenerate in vivo. Thus, dysfunction of these cells constitutes the most often cited reasons for the 150,000 or so corneal transplants performed yearly. Although current corneal transplantation is more than 90% successful at 1 year, longer term results are not as encouraging with approximately 70% success at 5 years. Nonimmunologic graft failure and allograft endothelial rejection are the main problems. Furthermore, the global shortage of donor corneas greatly restricts several corneal transplantations performed. With advances in understanding corneal endothelial cell biology, it is now possible to cultivate human corneal endothelial cells (HCECs) in vitro, thus providing new opportunities to develop novel tissue-engineered human corneal endothelium. This review will provide an overview of (a) the characteristics of human corneal endothelium; (b) past and present HCECs isolation and culture protocols; (c) various potential carriers for the generation of tissue-engineered corneal endothelium, together with some of the functional studies reported in various animal models; and (d) the current rapid advancements in surgical techniques for keratoplasty. A successful combination of tissue-engineered human corneal endothelium coupled with innovative and groundbreaking surgical procedures will bridge basic research involving cultured HCECs, bringing it from bench to bedside.

PubMed Disclaimer

Similar articles

Cited by

Publication types