Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Mar:(120):S1-6.
doi: 10.1038/ki.2010.509.

Glucose handling by the kidney

Affiliations
Free article
Review

Glucose handling by the kidney

Amanda Mather et al. Kidney Int Suppl. 2011 Mar.
Free article

Abstract

The kidney contributes to glucose homeostasis through processes of gluconeogenesis, glucose filtration, glucose reabsorption, and glucose consumption. Each of these processes can be altered in patients with type-2 diabetes (T2DM), providing potential targets for novel therapies. Recent studies have indicated that the kidney is responsible for up to 20% of all glucose production via gluconeogenesis. In patients with T2DM, overall glucose production increases by as much as 300%, with equal contributions from hepatic and renal sources. This increased production contributes not only to increased fasting glucose in T2DM patients but also to raised postprandial glucose because, in contrast to the liver, glucose ingestion increases renal gluconeogenesis. Under normal circumstances, up to 180 g/day of glucose is filtered by the renal glomerulus and virtually all of it is subsequently reabsorbed in the proximal convoluted tubule. This reabsorption is effected by two sodium-dependent glucose cotransporter (SGLT) proteins. SGLT2, situated in the S1 segment, is a low-affinity high-capacity transporter reabsorbing up to 90% of filtered glucose. SGLT1, situated in the S3 segment, is a high-affinity low-capacity transporter reabsorbing the remaining 10%. In patients with T2DM, renal reabsorptive capacity maladaptively increases from a normal level of 19.5 to 23.3 mmol/l/min. Once glucose has been reabsorbed into the tubular epithelial cells, it diffuses into the interstitium across specific facilitative glucose transporters (GLUTs). GLUT1 and GLUT2 are associated with SGLT1 and SGLT2, respectively.

PubMed Disclaimer

MeSH terms

Substances