Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jun;63(6):1527-33.
doi: 10.1002/art.30308.

Extra domain A of fibronectin primes leukotriene biosynthesis and stimulates neutrophil migration through activation of Toll-like receptor 4

Affiliations

Extra domain A of fibronectin primes leukotriene biosynthesis and stimulates neutrophil migration through activation of Toll-like receptor 4

Julie S Lefebvre et al. Arthritis Rheum. 2011 Jun.

Abstract

Objective: There is increasing evidence of a role for Toll-like receptors (TLRs) in inflammatory arthritis. The extra domain A (ED-A)-containing isoform of fibronectin is generated under pathologic conditions such as rheumatoid arthritis, and ED-A has been identified as an endogenous TLR-4 ligand. Leukotriene B4 (LTB4) and polymorphonuclear neutrophils (PMNs) play a critical role in murine models of inflammatory arthritis. The aim of this study was therefore to investigate the putative effects of ED-A on leukotriene biosynthesis and PMN migration through TLR signaling.

Methods: The effect of recombinant human ED-A (rhED-A) on leukotriene biosynthesis was evaluated in isolated human blood PMNs and monocytes by high-performance liquid chromatography. The capacity of rhED-A to stimulate PMN migration was evaluated using a transendothelial/matrix migration assay in vitro and the mouse air-pouch model in vivo.

Results: Recombinant human ED-A efficiently primed the biosynthesis of LTB4 in PMN and monocyte suspensions. This priming effect was dependent on TLR-4 activation, since the TLR-4-signaling inhibitor CLI-095 completely blocked the effect of rhED-A but not that of other TLR ligands (R-848, Pam2 CSK4) or cytokines. Moreover, rhED-A stimulated transendothelial migration of PMNs in vitro, which was inhibited by 50-60% with the LTB4 receptor 1 (BLT1) antagonist CP105,696 or the cytosolic phospholipase A2 α inhibitor pyrrophenone. In vivo, rhED-A induced a significant PMN recruitment into the air pouch of C3H/HeOuJ mice (expressing functional TLR-4), but not in C3H/HeJ mice (expressing nonsignaling TLR-4).

Conclusion: These results demonstrate the ability of rhED-A to promote LTB4 biosynthesis and PMN migration through TLR-4 activation, thus providing new insights on TLR-dependent mechanisms of regulation of LTB4 biosynthesis and PMN infiltration in inflammatory joint diseases.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources