Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Mar 30;133(12):4389-97.
doi: 10.1021/ja108378x. Epub 2011 Feb 25.

Hydrogen reactivity of palladium nanoparticles coated with mixed monolayers of alkyl thiols and alkyl amines for sensing and catalysis applications

Affiliations

Hydrogen reactivity of palladium nanoparticles coated with mixed monolayers of alkyl thiols and alkyl amines for sensing and catalysis applications

Monica Moreno et al. J Am Chem Soc. .

Abstract

Palladium monolayer-protected clusters (MPCs) coated with octylamines (C8NH(2)), hexanethiolates (C6S), and mixed monolayers of C8NH(2) and C6S exhibit significantly different reactivities with hydrogen gas, depending on the relative amounts of the two ligands coating the Pd nanoparticle surface, as determined by UV-vis spectroscopy of Pd MPCs in solution and electronic measurements of films of Pd MPCs as a function of exposure time to hydrogen. The average estimated composition of the ~3.0 nm diameter Pd MPCs was Pd(919)(C6S)(192) or Pd(919)(C8NH(2))(177-x)(C6S)(x), where x was varied to be 0, 3, 10, 16, 32, or 81 by the synthesis of pure C8NH(2) Pd MPCs and subsequent liquid-phase place exchange with a varied amount of C6SH. When x = 0-10, the Pd MPCs react strongly with H(2), leading to aggregated particles in solution and large irreversible changes in the morphology of films accompanied by an increase in film conductivity by 2-5 orders of magnitude. Pd(919)(C6S)(192) MPCs are stable against significant aggregation in solution and do not exhibit large film morphology changes, but they are also not highly reactive to H(2), as determined by minimal changes in the optical properties of solutions and the small, irreversible changes in the conductivity of films in the presence of H(2). Finally, when x is 32 and 81, the Pd MPCs are fairly stable, exhibit minimal aggregation or morphology changes, and readily react with H(2) based on the significant, reversible changes in film conductivity in the presence of H(2). Pd MPCs with mixed monolayers have the benefit of high H(2) reactivity while maintaining the structural stability necessary for sensing and catalysis applications.

PubMed Disclaimer

Publication types

LinkOut - more resources