Survivin withdrawal by nuclear export failure as a physiological switch to commit cells to apoptosis
- PMID: 21364662
- PMCID: PMC3032555
- DOI: 10.1038/cddis.2010.34
Survivin withdrawal by nuclear export failure as a physiological switch to commit cells to apoptosis
Abstract
Apoptosis is a tightly controlled process regulated by many signaling pathways; however, the mechanisms and cellular events that decide whether a cell lives or dies remain poorly understood. Here we showed that when a cell is under apoptotic stress, the prosurvival protein Survivin redistributes from the cytoplasm to the nucleus, thus acting as a physiological switch to commit the cell to apoptosis. The nuclear relocalization of Survivin is a result of inefficient assembly of functional RanGTP-CRM1-Survivin export complex due to apoptotic RanGTP gradient collapse. Subsequently, Survivin undergoes ubiquitination, which not only physically prevents its diffusion back to the cytoplasm but also facilitates its degradation. Together, this spatial and functional regulation of Survivin abolishes its cytoprotective effect toward the apoptotic executors and thus commits a cell to apoptosis. Our data indicate that the withdrawal of Survivin is a novel and active physiological regulatory mechanism that tilts the survival balance and promotes the progression of apoptosis.
Figures





References
-
- Shin S, Sung BJ, Cho YS, Kim HJ, Ha NC, Hwang JI, et al. An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7. Biochemistry. 2001;40:1117–1123. - PubMed
-
- Tamm I, Wang Y, Sausville E, Scudiero DA, Vigna N, Oltersdorf T, et al. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res. 1998;58:5315–5320. - PubMed
-
- Wheatley SP, McNeish IA. Survivin: a protein with dual roles in mitosis and apoptosis. Int Rev Cytol. 2005;247:35–88. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources