Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Feb 18;6(2):e17025.
doi: 10.1371/journal.pone.0017025.

HIV-1 molecular epidemiology in Guinea-Bissau, West Africa: origin, demography and migrations

Affiliations

HIV-1 molecular epidemiology in Guinea-Bissau, West Africa: origin, demography and migrations

Joakim Esbjörnsson et al. PLoS One. .

Abstract

The HIV-1 epidemic in West Africa has been dominated by subtype A and the recombinant form CRF02_AG. Little is known about the origins and the evolutionary history of HIV-1 in this region. We employed Maximum likelihood and Bayesian methods in combination with temporal and spatial information to reconstruct the HIV-1 subtype distribution, demographic history and migration patterns over time in Guinea-Bissau, West Africa. We found that CRF02_AG and subsubtype A3 were the dominant forms of HIV-1 in Guinea-Bissau and that they were introduced into the country on at least six different occasions between 1976 and 1981. These estimates also corresponded well with the first reported HIV-1 cases in Guinea-Bissau. Migration analyses suggested that (1) the HIV-1 epidemic started in the capital Bissau and then dispersed into more rural areas, and (2) the epidemic in Guinea-Bissau was connected to both Cameroon and Mali. This is the first study that describes the HIV-1 molecular epidemiology in a West African country by combining the results of subtype distribution with analyses of epidemic origin and epidemiological linkage between locations. The multiple introductions of HIV-1 into Guinea-Bissau, during a short time-period of five years, coincided with and were likely influenced by the major immigration wave into the country that followed the end of the independence war (1963-1974).

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. a–b. Determination of Guinea-Bissau-specific clusters in HIV-1 CRF02_AG and subsubtype A3 phylogenies.
Maximum-likelihood trees were reconstructed based on the sequences from Guinea-Bissau together with reference sequences (A. CRF02_AG and B. subsubtype A3). The scale bar at the bottom of each tree represents 0.01 nucleotide substitutions per site. Asterisks along branches represent significant monophyletic clusters (**: Zero-branch-length test p-values <0.001, and posterior probabilities >95% in corresponding Bayesian analysis. *: Zero-branch-length test p-values <0.01, and posterior probabilities >90%). Statistically supported clusters are numbered according to appearance in tree and the corresponding tMRCA are marked with filled circles (red circles  =  Guinea-Bissau-specific tMRCAs, and black circles  =  the tMRCA of the CRF02_AG or subsubtype A3). The colours represent the country or geographic region representing the origin of each tip in the phylogeny.
Figure 2
Figure 2. a–d. Bayesian skyline plots for the CRF02_AG and subsubtype A3 epidemics.
Non-parametric median estimates of the number of effective infections over time for a. the CRF02_AG Guinea-Bissau cluster 2, b. the CRF02_AG epidemic in West Africa, c. the subsubtype A3 Guinea-Bissau cluster 1, and d. the subsubtype A3 epidemic in West Africa. All plots were based on the relaxed clock assumption. The grey lines represent the upper and lower 95% highest posterior density estimates. The pink area highlights the decade following the time period (1976–1981) of the estimated HIV-1 introductions into Guinea-Bissau.
Figure 3
Figure 3. Net migration rates over 5-year intervals.
Mean number of immigrating and emigrating people per 1000 individuals over different 5-year intervals from 1950 to 2010 for Guinea-Bissau and neighbouring countries (Guinea, Mali, Senegal, and The Gambia). The pink area highlights the time period of the estimated HIV-1 introductions into Guinea-Bissau. Data were obtained from the United Nations World Population Prospects (United Nations Population Division, 2010) .
Figure 4
Figure 4. Temporal dynamics of spatial HIV-1 CRF02_AG diffusion within Guinea-Bissau.
Snapshots of the HIV-1 CRF02_AG dispersal pattern within Guinea-Bissau. Lines between locations represent branches in the maximum clade credibility tree (MCC) along which well-supported location transitions occurs. The diffusion process was visualized in Google Earth (http://earth.google.com).
Figure 5
Figure 5. Temporal dynamics of spatial HIV-1 subsubtype A3 diffusion within Guinea-Bissau.
Snapshots of the HIV-1 subsubtype A3 dispersal pattern within Guinea-Bissau. Lines between locations represent branches in the maximum clade credibility tree (MCC) along which well-supported location transitions occurs. The diffusion process was visualized in Google Earth (http://earth.google.com).
Figure 6
Figure 6. Temporal dynamics of spatial HIV-1 CRF02_AG diffusion between Guinea-Bissau and other African countries.
Snapshots of the HIV-1 CRF02_AG dispersal pattern between Guinea-Bissau and other African countries. Lines between locations represent branches in the maximum clade credibility tree (MCC) along which well-supported location transitions occurs. The diffusion process was visualized in Google Earth (http://earth.google.com).

Similar articles

Cited by

References

    1. Worobey M, Gemmel M, Teuwen DE, Haselkorn T, Kunstman K, et al. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature. 2008;455:661–664. - PMC - PubMed
    1. Keele BF, Van Heuverswyn F, Li Y, Bailes E, Takehisa J, et al. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science. 2006;313:523–526. - PMC - PubMed
    1. Taylor BS, Sobieszczyk ME, McCutchan FE, Hammer SM. The challenge of HIV-1 subtype diversity. N Engl J Med. 2008;358:1590–1602. - PMC - PubMed
    1. Lemey P, Rambaut A, Drummond AJ, Suchard MA. Bayesian phylogeography finds its roots. PLoS Comput Biol. 2009;5:e1000520. - PMC - PubMed
    1. Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214. - PMC - PubMed

Publication types

Associated data