Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2011 Mar 3:10:15.
doi: 10.1186/1475-2859-10-15.

Comparison of two codon optimization strategies to enhance recombinant protein production in Escherichia coli

Affiliations
Comparative Study

Comparison of two codon optimization strategies to enhance recombinant protein production in Escherichia coli

Hugo G Menzella. Microb Cell Fact. .

Abstract

Background: Variations in codon usage between species are one of the major causes affecting recombinant protein expression levels, with a significant impact on the economy of industrial enzyme production processes. The use of codon-optimized genes may overcome this problem. However, designing a gene for optimal expression requires choosing from a vast number of possible DNA sequences and different codon optimization methods have been used in the past decade. Here, a comparative study of the two most common methods is presented using calf prochymosin as a model.

Results: Seven sequences encoding calf prochymosin have been designed, two using the "one amino acid-one codon" method and five using a "codon randomization" strategy. When expressed in Escherichia coli, the variants optimized by the codon randomization approach produced significantly more proteins than the native sequence including one gene that produced an increase of 70% in the amount of prochymosin accumulated. On the other hand, no significant improvement in protein expression was observed for the variants designed with the one amino acid-one codon method. The use of codon-optimized sequences did not affect the quality of the recovered inclusion bodies.

Conclusions: The results obtained in this study indicate that the codon randomization method is a superior strategy for codon optimization. A significant improvement in protein expression was obtained for the largely established process of chymosin production, showing the power of this strategy to reduce production costs of industrial enzymes in microbial hosts.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Expression analysis of the synthetic gene variants by SDS-PAGE. Lane 1, molecular weight marker. Lane 2, lysate of E. coli W3100 culture harboring the pWT expression vector for the expression of wild type calf prochymosin gene grown in the absence of L-arabinose; lanes 3-10, lysate of E. coli W3100 culture harboring the pV0, pV1, pV2, pV3, pV4, pV5 and pV6 expression vector for the expression of V0-V6 synthetic versions of calf prochymosin grown in the with 2 g/l of L-arabinose. In all cases, cell cultures were brought to OD600 = 3 and 20 μl were used for the analysis.
Figure 2
Figure 2
Refolding efficiency of prochymosin prepared by expressing codon-optimized genes in E. coli W3110. Renaturation was carried out by diluting the urea-solubilized inclusion bodies in renaturation buffer at a final protein concentration of 1 mg/ml and incubating the mixture at 4°C for 12 h. Other experimental details are provided in the methods section. Values shown are means of three independent determinations. The standard deviations were in all the cases less than 10% of the corresponding means.

Similar articles

Cited by

References

    1. Burgess-Brown NA, Sharma S, Sobott F, Loenarz C, Oppermann U, Gileadi O. Codon optimization can improve expression of human genes in Escherichia coli: A multi-gene study. Protein Expr Purif. 2008;59(1):94–102. doi: 10.1016/j.pep.2008.01.008. - DOI - PubMed
    1. Welch M, Govindarajan S, Ness JE, Villalobos A, Gurney A, Minshull J, Gustafsson C. Design parameters to control synthetic gene expression in Escherichia coli. PLoS One. 2009;4(9):e7002. doi: 10.1371/journal.pone.0007002. - DOI - PMC - PubMed
    1. Zhou Z, Schnake P, Xiao L, Lal AA. Enhanced expression of a recombinant malaria candidate vaccine in Escherichia coli by codon optimization. Protein Expr Purif. 2004;34(1):87–94. doi: 10.1016/j.pep.2003.11.006. - DOI - PubMed
    1. Villalobos A, Ness JE, Gustafsson C, Minshull J, Govindarajan S. Gene Designer: a synthetic biology tool for constructing artificial DNA segments. BMC Bioinformatics. 2006;7:285. doi: 10.1186/1471-2105-7-285. - DOI - PMC - PubMed
    1. Ikemura T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J Mol Biol. 1981;146(1):1–21. doi: 10.1016/0022-2836(81)90363-6. - DOI - PubMed

Publication types

LinkOut - more resources