Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Jul;50(3):234-9.
doi: 10.1016/j.plipres.2011.02.003. Epub 2011 Mar 1.

Biosynthesis and functions of the plant sulfolipid

Affiliations
Review

Biosynthesis and functions of the plant sulfolipid

Mie Shimojima. Prog Lipid Res. 2011 Jul.

Abstract

Higher-plant chloroplast membranes are composed primarily of four characteristic lipids, namely monogalactosyldiacylglycerol, digalactosyldiacylglycerol, sulfoquinovosyldiacylglycerol (SQDG), and phosphatidylglycerol. Among them, SQDG is the only sulfur-containing anionic glycerolipid and is the least prevalent component of photosynthetic membrane lipids. SQDG biosynthesis is mostly mediated by UDP-sulfoquinovose synthase (SQD1) and SQDG synthase (SQD2). Recently, another essential gene for SQDG synthesis, UGP3, was identified using transcriptome coexpression analysis and reverse genetics. UGP3 is a novel plastid UDP-glucose pyrophosphorylase that supplies UDP-glucose to SQD1 in plastids. In Arabidopsis, SQDG is dispensable under normal growth conditions but important in certain environments, particularly phosphate-depleted conditions. The function of SQDG under phosphate-limited growth conditions is highly correlated with the regulation of other plant glycerolipid biosyntheses. This review summarizes recent research defining the mechanism for SQDG biosynthesis and its biological function in higher plants, particularly under phosphate-starved conditions.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources