Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2011 May;37(5):411-7.
doi: 10.1016/j.ejso.2011.02.001. Epub 2011 Mar 2.

A population-based validation of the prognostic model PREDICT for early breast cancer

Affiliations
Comparative Study

A population-based validation of the prognostic model PREDICT for early breast cancer

G C Wishart et al. Eur J Surg Oncol. 2011 May.

Abstract

Introduction: Predict (www.predict.nhs.uk) is a prognostication and treatment benefit tool developed using UK cancer registry data. The aim of this study was to compare the 10-year survival estimates from Predict with observed 10-year outcome from a British Columbia dataset and to compare the estimates with those generated by Adjuvant! (www.adjuvantonline.com).

Method: The analysis was based on data from 3140 patients with early invasive breast cancer diagnosed in British Columbia, Canada, from 1989-1993. Demographic, pathologic, staging and treatment data were used to predict 10-year overall survival (OS) and breast cancer specific survival (BCSS) using Adjuvant! and Predict models. Predicted outcomes from both models were then compared with observed outcomes.

Results: Calibration of both models was excellent. The difference in total number of deaths estimated by Predict was 4.1 percent of observed compared to 0.7 percent for Adjuvant!. The total number of breast cancer specific deaths estimated by Predict was 3.4 percent of observed compared to 6.7 percent for Adjuvant! Both models also discriminate well with similar AUC for Predict and Adjuvant! respectively for both OS (0.709 vs 0.712) and BCSS (0.723 vs 0.727). Neither model performed well in women aged 20-35.

Conclusion: In summary Predict provided accurate overall and breast cancer specific survival estimates in the British Columbia dataset that are comparable with outcome estimates from Adjuvant! Both models appear well calibrated with similar model discrimination. This study provides further validation of Predict as an effective predictive tool following surgery for invasive breast cancer.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources