Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jul-Aug;27(7-8):847-52.
doi: 10.1016/j.nut.2010.09.002. Epub 2011 Mar 3.

Effect of quercetin and glucuronide metabolites on the monoamine oxidase-A reaction in mouse brain mitochondria

Affiliations

Effect of quercetin and glucuronide metabolites on the monoamine oxidase-A reaction in mouse brain mitochondria

Saki Yoshino et al. Nutrition. 2011 Jul-Aug.

Abstract

Objective: Quercetin is a flavonoid found in plant foods and herbal medicines. It possesses antidepressant-like effects in forced swimming test-loaded rodents. We wanted to clarify the mechanism of action of dietary quercetin for exerting antidepressant-like effects. The effect of quercetin and its antioxidative metabolite quercetin 3-glucuronide (Q3GA) on the activity of mouse brain mitochondrial monoamine oxidase-A (MAO-A) was evaluated by measuring the deamination product of serotonin, 5-hydroxyindole acetaldehyde (5-HIAL).

Methods: An ultraviolet high-performance liquid chromatographic analysis was applied to measure the 5-HIAL generated by the reaction of MAO-A with serotonin. The inhibitory effect of quercetin and Q3GA on mitochondrial MAO-A activity was estimated by the content of 5-HIAL and hydrogen peroxide accompanied by the MAO-A reaction.

Results: Quercetin (but not Q3GA) decreased the production of 5-HIAL by MAO-A activity. Q3GA inhibited the generation of hydrogen peroxide from the MAO-A reaction with serotonin. A periodic forced swimming test in mice increased brain mitochondrial MAO-A activity. Brain mitochondrial MAO-A activity was decreased in mice administered quercetin for 7 d, but its effect was much weaker than that of the selective MAO-A inhibitor clorgyline.

Conclusion: Quercetin is effective in the modulation of serotonergic activity by attenuating mitochondrial MAO-A activity in the brain. Its antioxidative metabolite Q3GA attenuates oxidative stress by interrupting the generation of hydrogen peroxide accompanying the MAO-A reaction.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources