Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2011;34(3):401-7.
doi: 10.1248/bpb.34.401.

In vitro dissolution/permeation system to predict the oral absorption of poorly water-soluble drugs: effect of food and dose strength on it

Affiliations
Free article
Clinical Trial

In vitro dissolution/permeation system to predict the oral absorption of poorly water-soluble drugs: effect of food and dose strength on it

Makoto Kataoka et al. Biol Pharm Bull. 2011.
Free article

Abstract

The aim of the present work was to confirm the usefulness of the dissolution/permeation system (D/P system) in the estimation of human oral absorption of poorly water-soluble drugs. The D/P system, which can simultaneously evaluate drug absorption processes, dissolution and permeation, can predict the oral absorption of poorly water-soluble drugs in fasted and fed humans, with a correlation between in vivo oral absorption (% of absorbed) and in vitro permeated amount (% of dose/2 h) in the D/P system. The oral absorption (fraction of absorbed dose, %) of poorly water-soluble drugs in the fasted and fed states was predicted using the D/P system. The effect of food on the oral absorption of various drugs estimated by the D/P system significantly correlated with clinical data (correlation coefficient: r(2)=0.924). Moreover, the proportion of oral absorption of cilostazol was predicted to decrease with an increase in its dose strength, which significantly correlated with in vivo human absorption. Consequently, the D/P system was demonstrated to be a useful in vitro system for prediction of the oral absorption of poorly water-soluble drugs.

PubMed Disclaimer

Similar articles

Cited by