Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 May;18(3):133-8.
doi: 10.1097/MOH.0b013e32834521f3.

Membrane assembly during erythropoiesis

Affiliations
Review

Membrane assembly during erythropoiesis

Jing Liu et al. Curr Opin Hematol. 2011 May.

Abstract

Purpose of review: In this review, we summarize our current knowledge on the expression patterns of various proteins during erythropoiesis and discuss how this information can lead to development of detailed understanding of membrane biogenesis during erythropoiesis.

Recent findings: Changes in expression pattern of more than 30 red cell membrane proteins during terminal erythroid differentiation and during reticulocyte maturation was discerned. During maturation of murine reticulocytes, tubulin and cytosolic actin were lost, while the membrane-associated levels of myosin, tropomyosin, ICAM-4, GLUT4, Na/K-ATPase, NHE1, GPA, CD47, Duffy, and Kell were reduced. During murine terminal erythroid differentiation, expression levels of all major transmembrane and skeletal proteins of the mature red blood cell increased, while those of various adhesion molecules decreased. A 30-fold decrease in expression of the adhesive protein CD44 was noted during differentiation of murine proerythroblast to orthochromatic erythroblast. These changing protein expression patterns were used to devise an effective strategy to distinguish erythroblasts at distinct stages of development.

Summary: All major red cell membrane proteins undergo dynamic changes during terminal erythroid differentiation. Use of CD44 in conjunction with TER119 and cell size enabled the development of a method for distinguishing distinct stages of erythroblasts during murine erythropoiesis. These findings should enable development of detailed understanding of membrane biogenesis during erythropoiesis and obtain mechanistic insights into disordered erythropoiesis in various red cell disorders.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources