Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Mar 4:8:98.
doi: 10.1186/1743-422X-8-98.

Exhaled breath condensate sampling is not a new method for detection of respiratory viruses

Affiliations

Exhaled breath condensate sampling is not a new method for detection of respiratory viruses

Lieselot Houspie et al. Virol J. .

Abstract

Background: Exhaled breath condensate (EBC) sampling has been considered an inventive and novel method for the isolation of respiratory viruses.

Methods: In our study, 102 volunteers experiencing upper airway infection were recruited over the winter and early spring of 2008/2009 and the first half of the winter of 2009/2010. Ninety-nine EBCs were successfully obtained and screened for 14 commonly circulating respiratory viruses. To investigate the efficiency of virus isolation from EBC, a nasal swab was taken in parallel from a subset of volunteers. The combined use of the ECoVent device with the RTube™ allowed the registration of the exhaled volume and breathing frequency during collection. In this way, the number of exhaled viral particles per liter air or per minute can theoretically be estimated.

Results: Viral screening resulted in the detection of 4 different viruses in EBC and/or nasal swabs: Rhinovirus, Human Respiratory Syncytial Virus B, Influenza A and Influenza B. Rhinovirus was detected in 6 EBCs and 1 EBC was Influenza B positive. We report a viral detection rate of 7% for the EBCs, which is much lower than the detection rate of 46.8% observed using nasal swabs.

Conclusion: Although very promising, EBC collection using the RTube™ is not reliable for diagnosis of respiratory infections.

PubMed Disclaimer

References

    1. Horvath I, Hunt J, Barnes PJ, Alving K, Antczak A, Baraldi E, Becher G, van Beurden WJ, Corradi M, Dekhuijzen R. et al.Exhaled breath condensate: methodological recommendations and unresolved questions. Eur Respir J. 2005;26:523–548. doi: 10.1183/09031936.05.00029705. - DOI - PubMed
    1. Montuschi P. Analysis of exhaled breath condensate in respiratory medicine: methodological aspects and potential clinical applications. Ther Adv Respir Dis. 2007;1:5–23. doi: 10.1177/1753465807082373. - DOI - PubMed
    1. Johnson GR, Morawska L. The mechanism of breath aerosol formation. J Aerosol Med Pulm Drug Deliv. 2009;22:229–237. doi: 10.1089/jamp.2008.0720. - DOI - PubMed
    1. Echevarria JE, Erdman DD, Swierkosz EM, Holloway BP, Anderson LJ. Simultaneous detection and identification of human parainfluenza viruses 1, 2, and 3 from clinical samples by multiplex PCR. J Clin Microbiol. 1998;36:1388–1391. - PMC - PubMed
    1. Moes E, Vijgen L, Keyaerts E, Zlateva K, Li S, Maes P, Pyrc K, Berkhout B, van der Hoek L, Van Ranst M. A novel pancoronavirus RT-PCR assay: frequent detection of human coronavirus NL63 in children hospitalized with respiratory tract infections in Belgium. BMC Infect Dis. 2005;5:6. doi: 10.1186/1471-2334-5-6. - DOI - PMC - PubMed

Publication types

Associated data

LinkOut - more resources