Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Feb;3(1):41-50.

The interaction of cocaine with serotonin dorsal raphe neurons. Single-unit extracellular recording studies

Affiliations
  • PMID: 2137698

The interaction of cocaine with serotonin dorsal raphe neurons. Single-unit extracellular recording studies

K A Cunningham et al. Neuropsychopharmacology. 1990 Feb.

Abstract

Cocaine potently inhibits the spontaneous activity of dorsal raphe serotonin (5-hydroxytryptamine [5-HT] neurons which possess impulse-modulating receptors of the 5-HT1A subtype. In an investigation of the neuropharmacologic mechanisms underlying this electrophysiologic effect, we have compared cocaine with structurally and functionally similar compounds, attempted to reverse cocaine-induced suppression of 5-HT dorsal raphe nucleus (DRN) neuronal activity, and assessed the effects of 5-HT depletion on the response to cocaine. Extracellular recordings in chloral hydrate-anesthetized rats were obtained using single-unit recording techniques; drugs were infused intravenously IV) in a cumulative dose manner. The active isomer (-)-cocaine (ID50 = 0.5 +/- 0.15 mg/kg) and the phenyltropane analogue WIN 35428 (ID50 = 0.17 +/- 0.03 mg/kg) that share the ability of cocaine to block monoamine uptake also inhibit impulse activity in 5-HT neurons. In contrast, the inactive isomers (+)-cocaine, (+)-pseudococaine and the metabolite benzoylecgonine do not exhibit the same range of potency (maximal 20% to 30% inhibition at a cumulative dose of 8 to 16 mg/kg). A selective inhibitor of uptake for 5-HT (fluoxetine; ID50 = 1.8 +/- 0.5 mg/kg), but not norepinephrine (desipramine) or dopamine (GBR 12909), mimicked cocaine, as did the monoamine releaser amphetamine (ID50 = 2.86 +/- 0.46 mg/kg). The putative 5-HT1A autoreceptor antagonist spiperone reversed the cocaine-induced depression of firing rate in 64% of 5-HT neurons tested whereas receptor antagonists for dopamine D2 (haloperidol), 5-HT2 (ketanserin), gamma-aminobutyric acid (picrotoxin) and 5-HT1/beta-adrenergic (propranolol) were ineffective. Following treatment with the 5-HT synthesis inhibitor p-chlorophenylalanine (100 mg/kg/day of the base for 3 days), impulse depression induced by cocaine was significantly attenuated as compared to control, which suggests that the effects of cocaine may be dependent on endogenous 5-HT stores. In summary, these findings support the hypothesis that the inhibitory effects of cocaine on 5-HT DRN neurons are mediated by increased 5-HT available for interaction with 5-HT1A impulse-regulating autoreceptors in the DRN, as a consequence of cocaine-induced blockade of 5-HT reuptake processes. Further studies are required to clarify the relative contribution of cocaine-5-HT interactions to the behavioral and physiologic effects of this psychostimulant.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources