Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Oct;1(7):547-51.
doi: 10.1038/nchem.351. Epub 2009 Aug 30.

Total synthesis and study of 6-deoxyerythronolide B by late-stage C-H oxidation

Affiliations

Total synthesis and study of 6-deoxyerythronolide B by late-stage C-H oxidation

Erik M Stang et al. Nat Chem. 2009 Oct.

Abstract

Among the frontier challenges in chemistry in the twenty-first century are the interconnected goals of increasing synthetic efficiency and diversity in the construction of complex molecules. Oxidation reactions of C-H bonds, particularly when applied at late stages of complex molecule syntheses, hold special promise for achieving both these goals. Here we report a late-stage C-H oxidation strategy in the total synthesis of 6-deoxyerythronolide B (6-dEB), the aglycone precursor to the erythromycin antibiotics. An advanced intermediate is cyclized to give the 14-membered macrocyclic core of 6-dEB using a late-stage (step 19 of 22) C-H oxidative macrolactonization reaction that proceeds with high regio-, chemo- and diastereoselectivity (>40:1). A chelate-controlled model for macrolactonization predicted the stereochemical outcome of C-O bond formation and guided the discovery of conditions for synthesizing the first diastereomeric 13-epi-6-dEB precursor. Overall, this C-H oxidation strategy affords a highly efficient and stereochemically versatile synthesis of the erythromycin core.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Macrocyclization approaches to macrolide antibiotics
a, Structures and approaches towards the erythronolides. b, A general strategy for reducing the “oxygen load” in a linear sequence through the use of late-stage C—H oxidation. c, Possible π-allylPd(carboxylate) intermediates for C—H macrolactonization. d, Energy minimized structures of macrolides 1 and epi-1 using MMFF94s force field implemented in Molecular Operating Environment (MOE). FG, functional group; PMP, p-methoxyphenyl.
Figure 2
Figure 2. Synthesis of C—H macrolactonization precursor 2
(a) LDA (2.1 equiv), LiCl (6.0 equiv), allyl iodide (1.5 equiv), −78°C, >20:1 d.r., 96% (b) NH3BH3 (4.0 equiv), LDA (4.0 equiv), 0°C, 98% (c) oxalyl chloride (1.3 equiv), NEt3 (5.0 equiv), DMSO (1.6 equiv), −78°C (d) 5 (1.0 equiv), Bu2BOTf (1.2 equiv), i-Pr2NEt (1.4 equiv), −78°C, >20:1 d.r., 55% (2-steps) (e) AlMe3 (5.0 equiv), (MeO)NHMe-HCl (5.0 equiv), −10°C, 86% (f) PMBBr (1.8 equiv), NaH (1.8 equiv), 0°C, 96% (g) Dibal-H (2.0 equiv), −78°C, 91% (h) 7 (1.0 equiv), Bu2BOTf (1.2 equiv), NEt3 (1.2 equiv), −78°C, >20:1 d.r., 96% (i) DDQ (1.2 equiv), MgSO4 (14.0 equiv), >20:1 d.r., 93% (j) LAH (3.0 equiv), −78°C, 96% (k) PPh3 (1.2 equiv), I2 (1.4 equiv), imidazole (1.5 equiv), 94% (l) 4 (2.1 equiv), LDA (4.0 equiv), LiCl (12.7 equiv), 0°C, >20:1 d.r., 94% (m) NH3BH3 (4.0 equiv), LDA (4.0 equiv), 0°C, 99% (n) DMP (1.6 equiv), 96% (o) 10 (1.5 equiv), TiCl4 (1.2 equiv), Ti(Oi-Pr)4 (0.4 equiv), NEt3 (1.6 equiv), −78°C, 95:5 d.r., 88% (p) Zn(BH4)2 (1.6 equiv), −78°C, >20:1 d.r., 75–86% (q) CSA (cat.), 2,2-dimethoxypropane (9.8 equiv), 84% (r) LiOOH(aq) (2.0 equiv), 0°C, 99%. A, auxiliary number one; PMB, p-methoxybenzyl; LDA, lithium diisopropylamide; LAB, lithium amidotrihydroborate; DMSO, dimethylsulfoxide; OTf, trifluoromethanesulfonate; DDQ, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone; LAH, lithium aluminum hydride; DMP. Dess-Martin periodinane; CSA, camphorsulfonic acid.
Figure 3
Figure 3. Synthesis of macrolides 1 and epi-1
Reaction conditions: (a) 3 (0.3 equiv), BQ (2.0 equiv), 45°C, 72 h, >40:1 d.r., 34% + 45% r.s.m. (56% + 8% r.s.m., 2x recycle) (b) 3 (0.3 equiv), BQ (2.0 equiv), TBAF (0.3 equiv), 45°C, 72 h, 1:1.3 d.r., 20% + 75% r.s.m. (44% + 36% r.s.m., 2x recycle) (c) 3 (0.1 equiv), BQ (2.0 equiv), p-NO2BzOH (1.5 equiv), 45°C, 72 h, 1:1 d.r., 73% (combined) (d) LiOOH(aq) (2.0 equiv) (e) K2CO3 (3.0 equiv), MeOH, 97% (2-steps) (f) Cl3C6H2COCl (15.0 equiv), i-Pr2NEt (20.0 equiv), DMAP (40.0 equiv), Benzene, 87%. BQ, 1,4-benzoquinone; r.s.m., recovered starting material; TBAF, tetra-n-butylammonium fluoride; p-NO2BzOH, p-nitrobenzoic acid; DMAP, N,N-4-dimethylaminopyridine.
Figure 4
Figure 4. Synthesis of 6-deoxyerythronolide B
Reaction conditions for completing the synthesis of 6-dEB and its triacetate derivative 13 (X-ray crystallographic analysis shown): (a) Pd(OH)2/C (cat.), H2 (1 atm), i-PrOH, 96% (b) TPAP (cat.), NMO (5.0 equiv), 0°C, 84% (c) 1M HCl(aq) (11 equiv), 98% (d) Ac2O (93.0 equiv), DMAP (cat.), Pyridine, 96%. TPAP, tetra-n-propylammonium perruthenate; NMO, N-methylmorpholine oxide.

Comment in

References

    1. Fraunhoffer KJ, Bachovchin DA, White MC. Hydrocarbon oxidation vs. C—C bond-forming approaches for efficient synthesis of oxygenated molecules. Org Lett. 2005;7:223–226. - PubMed
    1. Chen MS, White MC. A predictably selective aliphatic C-H oxidation reaction for complex molecule synthesis. Science. 2007;318:783–787. - PubMed
    1. Das S, Incarvito CD, Crabtree RH, Brudvig GW. Molecular recognition in the selective oxygenation of saturated C-H bonds by a dimanganese catalyst. Science. 2006;312:1941–1943. - PubMed
    1. Yang J, Gabriele B, Belvedere S, Huang Y, Breslow R. Catalytic oxidations of steroid substrates by artificial cytochrome P-450 enzymes. J Org Chem. 2002;67:5057–5067. and references therein. - PubMed
    1. Nicolaou KC, et al. Total synthesis of taxol. Nature. 1994;367:630–634. - PubMed

Publication types