Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Apr 25;494(2):139-44.
doi: 10.1016/j.neulet.2011.02.076. Epub 2011 Mar 4.

Methionine diet-induced hyperhomocysteinemia accelerates cerebral aneurysm formation in rats

Affiliations

Methionine diet-induced hyperhomocysteinemia accelerates cerebral aneurysm formation in rats

Yong Xu et al. Neurosci Lett. .

Abstract

Background and purpose: The pathophysiology of cerebral aneurysms (CA) is linked to chronic inflammation. Endothelial damage is one of the first changes in CA walls resulted from inflammation. It has been shown that increase in plasma homocysteine (Hcy) impairs vascular endothelium and correlates with the development of atherosclerosis. However, the effect of hyperhomocysteinemia (HHcy) on the formation of cerebral aneurysm remains unknown.

Methods: Male Sprague-Dawley rats examined for developing cerebral aneurysms after surgical induction in the presence and absence of hypercysteinemia induced by a high L-methionine diet (1 g/kg/d). Aneurysms developed at the anterior cerebral-olfactory artery bifurcation were classified as 4 stages from no abnormality to saccular aneurysm. Plasma homocysteine levels and expression of vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), matrix metalloproteinase-2 (MMP-2), and MMP-9 in aneurysmal walls was examined and correlated with CA formation 3 months after surgery.

Results: Methionine diet significantly increased plasma homocysteine levels, accelerates CA formation after ligation of the left common carotid artery. Expression of VEGF, iNOS, MMP-2, and MMP-9 in aneurysmal walls was also increased by methionine treatment.

Conclusion: Hyperhomocysteinemia accelerates cerebral aneurysm formation, potentially through differential effects on expression of molecules critical for vascular wall modeling in a rat model.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources