Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Mar;258(3 Pt 2):H793-805.
doi: 10.1152/ajpheart.1990.258.3.H793.

Hypertensive-diabetic cardiomyopathy in rats

Affiliations

Hypertensive-diabetic cardiomyopathy in rats

F S Fein et al. Am J Physiol. 1990 Mar.

Abstract

Left ventricular papillary muscle function, transmembrane action potentials, myosin adenosinetriphosphatase (ATPase) and isoenzyme distribution, and myocardial pathology were studied in hypertensive (H), diabetic (D), hypertensive-diabetic (HD), and control (C) rats. There was approximately 50% relative left ventricular hypertrophy in H and HD rats. Relative lung and liver weights were greater in HD rats. Peak velocity of shortening tended to decrease progressively in H, D, and HD rats. The duration of contraction and relaxation was markedly prolonged in Ds and HDs. The length-developed tension relation was blunted in HDs. The negative inotropic effect of verapamil was similar in all groups. Resting membrane potential and amplitude were decreased in D and HD rats. Action potential duration was increased in H, D, and especially HD rats. The shortening of action potential duration with increased stimulus frequency was greater in H, D, and especially HD rats than in Cs. Left ventricular myosin ATPase and V1 isoenzyme content decreased progressively in H, D, and HD rats. Right ventricular V1 isoenzyme content was not affected in H rats but was markedly decreased in D and HD rats. Left (and right) ventricular pathology was unchanged in rats with diabetes but was increased in rats with hypertension. These data suggest that the combination of myocardial pathology (due to hypertension) and cellular dysfunction (caused mainly by diabetes) may result in cardiomyopathy and congestive heart failure in the HD rat.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources