Increased availability of angiotensin AT 1 receptors leads to sustained arterial constriction to angiotensin II in diabetes - role for Rho-kinase activation
- PMID: 21385178
- PMCID: PMC3130951
- DOI: 10.1111/j.1476-5381.2011.01307.x
Increased availability of angiotensin AT 1 receptors leads to sustained arterial constriction to angiotensin II in diabetes - role for Rho-kinase activation
Abstract
Background and purpose: Antagonists of angiotensin AT(1) receptors elicit beneficial vascular effects in diabetes mellitus. We hypothesized that diabetes induces sustained availability of AT(1) receptors, causing enhanced arterial constriction to angiotensin II.
Experimental approach: To assess functional availability of AT(1) receptors, constrictions to successive applications of angiotensin II were measured in isolated skeletal muscle resistance arteries (∼150 µm) of Zucker diabetic fatty (ZDF) rats and of their controls (+/Fa), exposed acutely to high glucose concentrations (HG, 25 mM, 1 h). AT(1) receptors on cell membrane surface were measured by immunofluorescence.
Key results: Angiotensin II-induced constrictions to first applications were greater in arteries of ZDF rats (maximum: 82 ± 3% original diameter) than in those from +/Fa rats (61 ± 5%). Constrictions to repeated angiotensin II administration were decreased in +/Fa arteries (20 ± 6%), but were maintained in ZDF arteries (67 ± 4%) and in +/Fa arteries vessels exposed to HG (65 ± 6%). In ZDF arteries and in HG-exposed +/Fa arteries, Rho-kinase activities were enhanced. The Rho-kinase inhibitor, Y27632 inhibited sustained constrictions to angiotensin II in ZDF arteries and in +/Fa arteries exposed to HG. Levels of surface AT(1) receptors on cultured vascular smooth muscle cells (VSMCs) were decreased by angiotensin II but were maintained in VSMCs exposed to HG. In VSMCs exposed to HG and treated with Y27632, angiotensin II decreased surface AT(1) receptors.
Conclusions and implications: In diabetes, elevated glucose concentrations activate Rho-kinase which inhibits internalization or facilitates recycling of AT(1) receptors, leading to increased functional availability of AT(1) receptors and sustained angiotensin II-induced arterial constriction.
© 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
Figures
References
-
- Anborgh PH, Seachrist JL, Dale LB, Ferguson SS. Receptor/beta-arrestin complex formation and the differential trafficking and resensitization of beta2-adrenergic and angiotensin II type 1A receptors. Mol Endocrinol. 2000;14:2040–2053. - PubMed
-
- Arun KH, Kaul CL, Ramarao P. AT1 receptors and L-type calcium channels: functional coupling in supersensitivity to angiotensin II in diabetic rats. Cardiovasc Res. 2005;65:374–386. - PubMed
-
- Bagi Z, Koller A. Lack of NO-mediation of flow-dependent arteriolar dilation in diabetes is restored by sepiapterin. J Vasc Res. 2003;40:47–57. - PubMed
-
- Bagi Z, Koller A, Kaley G. Superoxide-NO interaction decreases flow- and agonist-induced dilations of coronary arterioles in Type 2 diabetes mellitus. Am J Physiol Heart Circ Physiol. 2003;285:H1404–H1410. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
