Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2011;15(2):R86.
doi: 10.1186/cc10084. Epub 2011 Mar 7.

Vascular pedicle width in acute lung injury: correlation with intravascular pressures and ability to discriminate fluid status

Affiliations
Randomized Controlled Trial

Vascular pedicle width in acute lung injury: correlation with intravascular pressures and ability to discriminate fluid status

Todd W Rice et al. Crit Care. 2011.

Abstract

Introduction: Conservative fluid management in patients with acute lung injury (ALI) increases time alive and free from mechanical ventilation. Vascular pedicle width (VPW) is a non-invasive measurement of intravascular volume status. The VPW was studied in ALI patients to determine the correlation between VPW and intravascular pressure measurements and whether VPW could predict fluid status.

Methods: This retrospective cohort study involved 152 patients with ALI enrolled in the Fluid and Catheter Treatment Trial (FACTT) from five NHLBI ARDS (Acute Respiratory Distress Syndrome) Network sites. VPW and central venous pressure (CVP) or pulmonary artery occlusion pressure (PAOP) from the first four study days were correlated. The relationships between VPW, positive end-expiratory pressure (PEEP), cumulative fluid balance, and PAOP were also evaluated. Receiver operator characteristic (ROC) curves were used to determine the ability of VPW to detect PAOP < 8 mmHg and PAOP ≥ 18 mm Hg.

Results: A total of 71 and 152 patients provided 118 and 276 paired VPW/PAOP and VPW/CVP measurements, respectively. VPW correlated with PAOP (r = 0.41; P < 0.001) and less well with CVP (r = 0.21; P = 0.001). In linear regression, VPW correlated with PAOP 1.5-fold better than cumulative fluid balance and 2.5-fold better than PEEP. VPW discriminated achievement of PAOP < 8 mm Hg (AUC = 0.73; P = 0.04) with VPW ≤67 mm demonstrating 71% sensitivity (95% CI 30 to 95%) and 68% specificity (95% CI 59 to 75%). For discriminating a hydrostatic component of the edema (that is, PAOP ≥ 18 mm Hg), VPW ≥ 72 mm demonstrated 61.4% sensitivity (95% CI 47 to 74%) and 61% specificity (49 to 71%) (area under the curve (AUC) 0.69; P = 0.001).

Conclusions: VPW correlates with PAOP better than CVP in patients with ALI. Due to its only moderate sensitivity and specificity, the ability of VPW to discriminate fluid status in patients with acute lung injury is limited and should only be considered when intravascular pressures are unavailable.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Representation of the VPW measurement and change in VPW over time. The VPW is the distance between where the left subclavian artery exits the aortic arch and where the superior vena cava crosses the right mainstem bronchus. (a-b) represent CXRs from the same patient at baseline and Day 3, respectively, where the VPW has decreased by 13 mm.
Figure 2
Figure 2
Flow diagram showing study enrollment and available CXRs.
Figure 3
Figure 3
Correlation of VPW with PAOP and CVP. (a) demonstrates that VPW correlates moderately well with PAOP (VPW = 57 + 0.9*PAOP; r = 0.41; P < 0.001). (b) demonstrates the weak correlation between VPW and CVP (VPW = 66.4 + 0.45*CVP; r = 0.21; P = 0.001).
Figure 4
Figure 4
ROC curve for VPW discriminating fluid status by PAOP. (a) demonstrates that VPW of 67 mm discriminates PAOP <8 mmHg (AUC = 0.73; P = 0.04). (b) demonstrates that VPW of 72 discriminates PAOP ≥18 mmHg (AUC = 0.69; P = 0.001).
Figure 5
Figure 5
Suggested fluid management algorithm for ALI patients using VPW.

References

    1. Wheeler AP, Bernard GR, Thompson BT, Schoenfeld D, Wiedemann HP, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL. Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med. 2006;354:2213–2224. doi: 10.1056/NEJMoa061895. - DOI - PubMed
    1. Antonelli M, Levy M, Andrews PJ, Chastre J, Hudson LD, Manthous C, Meduri GU, Moreno RP, Putensen C, Stewart T, Torres A. Hemodynamic monitoring in shock and implications for management. International Consensus Conference, Paris, France, 27-28 April 2006. Intensive Care Med. 2007;33:575–590. doi: 10.1007/s00134-007-0531-4. - DOI - PubMed
    1. Heresi GA, Arroliga AC, Wiedemann HP, Matthay MA. Pulmonary artery catheter and fluid management in acute lung injury and the acute respiratory distress syndrome. Clin Chest Med. 2006;27:627–635. doi: 10.1016/j.ccm.2006.08.002. - DOI - PubMed
    1. Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564–2575. doi: 10.1056/NEJMoa062200. - DOI - PubMed
    1. Milne EN, Pistolesi M, Miniati M, Giuntini C. The vascular pedicle of the heart and the vena azygos. Part I: The normal subject. Radiology. 1984;152:1–8. - PubMed

Publication types