Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May 19;22(19):194115.
doi: 10.1088/0953-8984/22/19/194115. Epub 2010 Apr 26.

Pericyte actomyosin-mediated contraction at the cell-material interface can modulate the microvascular niche

Affiliations

Pericyte actomyosin-mediated contraction at the cell-material interface can modulate the microvascular niche

Sunyoung Lee et al. J Phys Condens Matter. .

Abstract

Pericytes physically surround the capillary endothelium, contacting and communicating with associated vascular endothelial cells via cell-cell and cell-matrix contacts. Pericyte-endothelial cell interactions thus have the potential to modulate growth and function of the microvasculature. Here we employ the experimental finding that pericytes can buckle a freestanding, underlying membrane via actin-mediated contraction. Pericytes were cultured on deformable silicone substrata, and pericyte-generated wrinkles were imaged via both optical and atomic force microscopy (AFM). The local stiffness of subcellular domains both near and far from these wrinkles was investigated by using AFM-enabled nanoindentation to quantify effective elastic moduli. Substratum buckling contraction was quantified by the normalized change in length of initially flat regions of the substrata (corresponding to wrinkle contour lengths), and a model was used to relate local strain energies to pericyte contractile forces. The nature of pericyte-generated wrinkling and contractile protein-generated force transduction was further explored by the addition of pharmacological cytoskeletal inhibitors that affected contractile forces and the effective elastic moduli of pericyte domains. Actin-mediated forces are sufficient for pericytes to exert an average buckling contraction of 38% on the elastomeric substrata employed in these in vitro studies. Actomyosin-mediated contractile forces also act in vivo on the compliant environment of the microvasculature, including the basement membrane and other cells. Pericyte-generated substratum deformation can thus serve as a direct mechanical stimulus to adjacent vascular endothelial cells, and potentially alter the effective mechanical stiffness of nonlinear elastic extracellular matrices, to modulate pericyte-endothelial cell interactions that directly influence both physiologic and pathologic angiogenesis.

PubMed Disclaimer

Publication types

LinkOut - more resources