Adapting the γ-H2AX assay for automated processing in human lymphocytes. 1. Technological aspects
- PMID: 21388271
- PMCID: PMC3121903
- DOI: 10.1667/RR2125.1
Adapting the γ-H2AX assay for automated processing in human lymphocytes. 1. Technological aspects
Abstract
The immunofluorescence-based detection of γ-H2AX is a reliable and sensitive method for quantitatively measuring DNA double-strand breaks (DSBs) in irradiated samples. Since H2AX phosphorylation is highly linear with radiation dose, this well-established biomarker is in current use in radiation biodosimetry. At the Center for High-Throughput Minimally Invasive Radiation Biodosimetry, we have developed a fully automated high-throughput system, the RABIT (Rapid Automated Biodosimetry Tool), that can be used to measure γ-H2AX yields from fingerstick-derived samples of blood. The RABIT workstation has been designed to fully automate the γ-H2AX immunocytochemical protocol, from the isolation of human blood lymphocytes in heparin-coated PVC capillaries to the immunolabeling of γ-H2AX protein and image acquisition to determine fluorescence yield. High throughput is achieved through the use of purpose-built robotics, lymphocyte handling in 96-well filter-bottomed plates, and high-speed imaging. The goal of the present study was to optimize and validate the performance of the RABIT system for the reproducible and quantitative detection of γ-H2AX total fluorescence in lymphocytes in a multiwell format. Validation of our biodosimetry platform was achieved by the linear detection of a dose-dependent increase in γ-H2AX fluorescence in peripheral blood samples irradiated ex vivo with γ rays over the range 0 to 8 Gy. This study demonstrates for the first time the optimization and use of our robotically based biodosimetry workstation to successfully quantify γ-H2AX total fluorescence in irradiated peripheral lymphocytes.
Figures






References
-
- Sedelnikova OA, Pilch DR, Redon C, Bonner WM. Histone H2AX in DNA damage and repair. Cancer Biol Ther. 2003;2:233–235. - PubMed
-
- McKinnon PJ, Caldecott KW. DNA strand break repair and human genetic disease. Annu Rev Genomics Hum Genet. 2007;8:37–55. - PubMed
-
- O’Driscoll M, Jeggo PA. The role of double-strand break repair – insights from human genetics. Nat Rev Genet. 2006;7:45–54. - PubMed
-
- Bau DT, Mau YC, Ding SL, Wu PE, Shen CY. DNA double-strand break repair capacity and risk of breast cancer. Carcinogenesis. 2007;28:1726–1730. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources