Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Aug;32(15):1838-45.
doi: 10.1093/eurheartj/ehr026. Epub 2011 Mar 8.

Cardiac inotropes: current agents and future directions

Affiliations
Review

Cardiac inotropes: current agents and future directions

Gerd Hasenfuss et al. Eur Heart J. 2011 Aug.

Abstract

Intrinsic inotropic stimulation of the heart is central to the regulation of cardiovascular function, and exogenous inotropic therapies have been used clinically for decades. Unfortunately, current inotropic drugs have consistently failed to show beneficial effects beyond short-term haemodynamic improvement in patients with heart failure. To address these limitations, new agents targeting novel mechanisms are being developed: (i) istaroxime has been developed as a non-glycoside inhibitor of the sodium-potassium-ATPase with additional stimulatory effects on the sarcoplasmic reticulum calcium pump (SERCA) and has shown lusitropic and inotropic properties in experimental and early clinical studies; (ii) from a mechanistic point of view, the cardiac myosin activators, directly activating the acto-myosin cross-bridges, are most appealing with improved cardiac performance in both animal and early clinical studies; (iii) gene therapy approaches have been successfully employed to increase myocardial SERCA2a; (iv) nitroxyl donors have been developed and have shown evidence of positive lusitropic and inotropic, as well as potent vasodilatory effects in early animal studies; (v) the ryanodine receptor stabilizers reduce pathological leak of calcium from the sarcoplasmic reticulum with initial promising pre-clinical results; and finally, (vi) metabolic energy modulation may represent a promising means to improve contractile performance of the heart. There is an urgent clinical need for agents that improve cardiac performance with a favourable safety profile. These current novel approaches to improving cardiac function provide the hope that such agents may soon be available.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms